
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 1

Dr Nick Hayward

Course Details

Lecturer

Name: Dr Nick Hayward

Office hours
Tuesday by appointment

Faculty Page

http://www.luc.edu/cs/people/ftfaculty/haywardnicholas.shtml

Course Schedule

Important dates for this semester

No Class - Monday 20th January 2020

Project outline and mockup - presentation & demo
10th February 2020 @ 4.15pm

Spring break
n.b. no formal class: Monday 2nd March 2020

DEV week: 9th to 16th March 2020

DEV week - presentation & demo
16th March 2020 @ 4.15pm

Final class: 20th April 2020

Final presentation & demo
20th April 2020 @ 4.15pm

Exam week: 27th April to 2nd May 2020
Final assessment due on 27th April 2020

Coursework schedule

Presentations, reports &c.

project outline and mockup
due Monday 10th February 2020 @ 4.15pm

DEV week demo
due Monday 16th March 2020 @ 4.15pm

final team demo
due Monday 20th April 2020 @ 4.15pm

final team report
due Monday 27th April 2020

Initial Course Plan - Part 1

(up to ~ DEV Week)

Build and publish a web app from scratch
general setup and getting started

maintenance and publication

basic development and manipulation (HTML, CSS, JS…)

add some fun with Ajax, JSON, server-side…

useful data storage techniques and options

testing…

Initial Course Plan - Part 2

(Up to the end of the semester)

Augment and develop initial app

Explore other options
further libraries and options

tools and workflows

visualisations, graphics…

publish (again…)

Data options
self hosted (MongoDB, Redis…)

APIs

cloud services, storage (Firebase, Heroku, mLab…)

React…

Assignments and Coursework

Course will include

weekly bibliography and reading (where applicable)

weekly notes, examples, extras…

Coursework will include

exercises and discussions (Total = 20%)
various individual or group exercises and discussions

project outline & mockup (Total = 15%)
brief group presentation of initial concept and mockup

due Monday 10th February 2020 @ 4.15pm

DEV week assessment (Total = 25%)
DEV week: 9th to 16th March 2020

presentation & demo: 16th March 2020 @ 4.15pm

end of semester final assessment (Total = 40%)
demo due Monday 20th April 2020 @ 4.15pm

final report due Monday 27th April 2020 @ 4.15pm

Exercises & discussions

Course total = 20%

exercises
help develop course project

test course knowledge at each stage

get feedback on project work

discussions
sample websites and applications

design topics, UI and UX concepts

extras
code and application reviews

various other assessments

peer review of demos

Development and Project Assessment

Course total = 80% (Parts 1, 2 and 3
combined)

Initial overview

combination project work
part 1 = project outline & mockup (15%)

part 2 = DEV Week development & demo (25%)

part 3 = final demo and report (40%)

group project (max. 5 persons per group)

design and develop a web app
purpose, scope &c. is group’s choice
NO blogs, to-do lists, note-taking…
chosen topic requires approval
NO content management systems (CMSs) such as Drupal, Joomla,
WordPress…
NO PHP, Python, Ruby, C# & .Net, Go, XML…
NO CSS frameworks, such as Bootstrap, Foundation, Materialize…

must implement data from either
self hosted (MongoDB, Redis…)
APIs
cloud services, storage (Firebase, Heroku, mLab &c.)
NO SQL…

Project outline & mockup assessment

Course total = 15%

begin outline and design of a web application
built from scratch
HTML5, CSS…

builds upon examples, technology outlined during first part of
semester

purpose, scope &c. is group’s choice

NO blogs, to-do lists, note-taking…
chosen topic requires approval

presentation should include mockup designs and concepts

Project mockup demo

Assessment will include the following:

brief presentation or demonstration of current project work
~ 5 to 10 minutes per group

analysis of work conducted so far

presentation and demonstration
outline current state of web app concept and design
show prototypes and designs

due Monday 10th February 2020 @ 4.15pm

DEV Week Assessment

Course total = 25%

continue development of a web application
built from scratch
HTML5, CSS, plain JavaScript…

continue design and development of initial project outline and design

working app (as close as possible…)

NO content management systems (CMSs) such as Drupal, Joomla,
WordPress…

NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…

NO CSS frameworks, such as Bootstrap, Foundation, Materialize…

NO CSS preprocessors such as Sass…

NO template tools such as Handlebars.js &c.

data may be implemented from either
self hosted (MongoDB, Redis…)
APIs
cloud services (Firebase…)
NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

outline research conducted

describe data chosen for application

show any prototypes, patterns, and designs

DEV Week Demo

DEV week assessment will include the
following:

brief presentation or demonstration of current project work
~ 5 to 10 minutes per group

analysis of work conducted so far
e.g. during semester & DEV week

presentation and demonstration
outline current state of web app
explain what works & does not work
show implemented designs since project outline & mockup
show latest designs and updates

due Monday 16th March 2020 @ 4.15pm

Final Assessment

Course total = 40%

continue to develop your app concept and prototypes
working app
NO content management systems (CMSs) such as Drupal, Joomla,
WordPress…
NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…
NO CSS frameworks, such as Bootstrap, Foundation, Materialize…
NO CSS preprocessors such as Sass…
NO template tools such as Handlebars.js &c.
must implement data from either
self hosted (MongoDB, Redis…)
APIs
cloud services (Firebase…)
NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

explain design decisions
describe patterns used in design of UI and interaction
layout choices…

show and explain implemented differences from DEV week
where and why did you update the app?
perceived benefits of the updates?

how did you respond to peer review?

…

final demo
due Monday 20th April 2020 @ 4.15pm

final report
due Monday 27th April 2020

Goals of the course

A guide to developing and publishing
interactive client-side web applications and
publications.

Course will provide

guide to developing client-side web applications from scratch

guide to publishing web apps for public interaction and usage

best practices and guidelines for development

fundamentals of web application development

intro to advanced options for client-side development

…

Course Resources - part 1

Website

Course website is available at
https://csteach424.github.io

timetable

course overview

course blog

weekly assignments & coursework

bibliography

links & resources

notes & material

No Sakai

https://csteach424.github.io/

Course Resources - part 2

GitHub

course repositories available at https://github.com/csteach424
weekly notes

examples

source code (where applicable)

Trello group

group for weekly assignments, DEV week posts, &c.

Trello group - ‘COMP 324/424 - Spring 2020 @ LUC’
https://trello.com/csteach424

Slack group

group for class communication, weekly discussions, questions,
&c.

Slack group - ‘COMP 324/424 - Spring 2020 @ LUC’
https://csteach424-2020.slack.com

https://github.com/csteach424
https://trello.com/csteach424
https://csteach424-2020.slack.com/

Group projects

add project details to course’s Trello group, COMP 324/424 -

Spring 2020 @ LUC

Week 1 - Project Details

https://trello.com/b/vKqmRDdp/week-1-project-details

create channels on Slack for group communication
please add me to the private channel

start working on an idea for your project

plan weekly development up to and including DEV Week

https://trello.com/b/vKqmRDdp/week-1-project-details

Intro to Client-side web design

allows us to design and develop online resources and
publications for users
both static and interactive

restrict publication to content
text, images, video, audio…

develop and publish interactive resources and applications

client-side scripting allows us to offer
interactive content within our webpages and web apps

interaction is enabled via code that is downloaded and
compiled, in effect, by the browser

such interaction might include
a simple mouse rollover or similar touch event

user moving mouse over a menu
simple but effective way of interacting

Client-side and server-side - Part 1

Client-side

scripts and processes are run on the user’s machine, normally
via a browser
source code and app is transferred to the user’s machine for
processing

code is run directly in the browser

predominant languages include HTML, CSS, and JavaScript
(JS)
HTML = HyperText Markup Language

CSS = Cascading Style Sheets

many compilers and transpilers now available to ease this
development
e.g. Go to JavaScript…

reacts to user input

code is often visible to the user (source can be read in
developer mode etc…)

in general, cannot store data beyond a page refresh
HTML5 and local web APIs are changing this…

in general, cannot read files directly from a server
HTTP requests required

single page apps create rendered page for the user

Client-side and server-side - Part 2

Server-side

code is run on a server
languages such as PHP, Ruby, Python, Java, C#…

in effect, any code that can run and respond to HTTP requests can
also run a server

enables storage of persistent data
data such as user accounts, preferences…

code is not directly visible to the user

responds to HTTP requests for a given URL

can render the view for the user on the server side

and so on…

Getting started

basic building blocks include HTML, CSS, and JS

many tools available to work with these technologies

three primary tools help with this type of development

web browser
such as Chrome, Edge (IE?), Firefox, Opera, Safari…

editor
such as Atom, Sublime, Microsoft’s Visual Studio Code…

version control
Git, (Mercurial, Subversion)

GitHub, Bitbucket…

https://atom.io/
http://www.sublimetext.com/
https://code.visualstudio.com/

Getting started - Web Browsers

choose your favourite
Chrome, Firefox, Safari, Edge…

not IE

developer specific tools
Chrome etc view source, developer tools, JS console

Firefox also includes excellent developer tools

Firebug

cross-browser extension for web developers
Web Developer

http://getfirebug.com/
http://chrispederick.com/work/web-developer/

Getting started - Editors

Many different choices including

Linux, OS X, and Windows

Atom

Sublime

Visual Studio Code

OS X specific

BBEdit
TextWrangler

and so on.

https://atom.io/
http://www.sublimetext.com/
https://code.visualstudio.com/
http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/textwrangler/

Video - Atom 1.0

Source - YouTube - Introducing Atom 1.0

Introducing Atom 1.0!Introducing Atom 1.0!

https://www.youtube.com/watch?v=Y7aEiVwBAdk
https://www.youtube.com/watch?v=Y7aEiVwBAdk

HTML - Intro

acronym for HyperText Markup Language

simple way to structure visual components of a website or web
application

HTML also uses keywords, or element tags
follow a defined syntax

helps us to create web pages and web applications
web browsers, such as Chrome or Firefox, may render for viewing

an error can stop a web page from rendering
more likely it will simply cause incorrect page rendering

interested in understanding the core of web page designing
understand at least the basics of using HTML

HTML - structure of HTML

basic HTML tag defines the entire HTML document

<html>

 ...

</html>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 ...

 </head>

 <body>

 ...

 </body>

</html>

HTML - Element syntax - part 1

Constructed using elements and attributes,
which are embedded within an HTML
document.

Elements should adhere to the following,

start with an opening element tag, and close with a matching
closing tag
names may use characters in the range 0-9, a-z, A-Z

content is, effectively, everything between opening and closing
element tags

elements may contain empty or void content

empty elements should be closed in the opening tag

most elements permit attributes within the opening tag

HTML - Element syntax - part 2

An element’s start tag adheres to a structured
pattern, which may be as follows,

1. a < character
2. tag name
3. optional attributes, which are separated by a space character
4. optional space characters (one or more…)
5. optional / character, indicating a void element
6. a > character

For example,

<!-- opening element tag -->
<div>

<!-- void element -->

HTML - Element syntax - part 3

An element’s end tag also adheres to a
pattern, again exactly as defined as following,

1. a < character
2. a / character
3. element’s tag name (i.e. name used in matching start tag)
4. optional space characters (one or more…)
5. a > character

For example,

NB: void elements, such as
 or <img
/>, do not specify end tags.

<!-- element's matching end tag -->
</div>

HTML - Element syntax - part 4

HTML, XHTML, can be written to follow the patterns and
layouts of XML

HTML elements can also be nested with a parent, child, sibling…
relationship within the overall tree data structure for the document

as the HTML page is loaded by a web browser
the HTML DOM (document object model) is created

basically a tree of objects that constitutes the underlying
structure
the rendered HTML page

DOM gives us an API (application programming interface)
a known way of accessing, manipulating the underlying elements,
attributes, and content

DOM very useful for JavaScript manipulation

Example - DOM structure & JavaScript

traverse DOM tree with JavaScript generator

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-dom/

HTML - attribute syntax - part 1

HTML attributes follow the same design pattern as XML

provide additional information to the parent element

placed in the opening tag of the element

follow the standard syntax of name and value pairs

many different permitted legal attributes in HTML

four common names that are permitted within most HTML
elements
class, id, style, title

HTML - attribute syntax - part 2

Four common names permitted within most
HTML elements

class
specifies a classname for an element

id
specifies a unique ID for an element

style
specifies an inline style for an element

title
specifies extra information about an element

can be displayed as a tooltip by default

NB:

cannot use same name for two or more attributes
regardless of case

on the same element start tag

HTML - attribute syntax - part 3

A few naming rules for attributes

empty attribute syntax
<input disable>

unquoted attribute-value syntax
<input value=yes>
value followed by /, at least one space character after the value and
before /
i.e. usage with a void element…

single quoted attribute-value syntax
<input type='checkbox'>

double quoted attribute-value syntax
<input title="hello">

NB:

further specific restrictions may apply for the above

consult W3 Docs for further details

above examples taken from W3 Docs - Syntax Attributes Single
Quoted

http://www.w3.org/TR/html-markup/syntax.html#syntax-attributes
http://www.w3.org/TR/html-markup/syntax.html#syntax-attr-single-quoted

Example - HTML - custom attributes - part 1

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>JS tests - DOM creation - Attributes</title>

 </head>

 <body>

 <header>

 <h3>JS tests - DOM dynamic creation - Attribute Access</h3>

 </header>

 <section id="content">

 <p>

 <blockquote id="berryhead" data-visible="true">

 Shine through the gloom, and point me to the skies

 </blockquote>

 </p>

 </section>

 <script type="module" src="./attributes.js"></script>

 </body>

</html>

Example - HTML - custom attributes - part 2

example - Basic Attribute

/*
* attributes.js
* - basic access for custom attributes
*/

// get example blockquote nodes
let quotes = document.body.getElementsByTagName('blockquote');

// loop through quotes - freeze quotes object using Array.from to create array
for (let quote of Array.from(quotes)) {

 if (quote.getAttribute('data-visible')) {

 quote.setAttribute('data-visible', 'false');

 }

}

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute/

Example - HTML - custom attributes - part 3

example - Basic Attribute 2

MDN - Using Dynamic Styling Information

/*
* attributes.js
* - basic access for custom attributes
* - add event listener for mouse click
*/

// get example blockquote nodes
let quote = document.getElementById('berryhead');

// add event listener to quotes object
quote.addEventListener('click', () => {

 if (quote.getAttribute('data-visible') === 'true') {

 quote.setAttribute('data-visible', 'false');

 quote.style.color = '#779eab';

 } else {

 quote.setAttribute('data-visible', 'true');

 quote.style.color = '#000';

 }

});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute2/
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information

HTML - Doctype - HTML5

DOCTYPE is a special instruction to the web browser
concerning the required processing mode for rendering the
document’s HTML

doctype is a required part of the HTML document

first part of our HTML document

should always be included at the top of a HTML document, e.g.

or

doctype we add for HTML5 rendering

not a HTML element, simply tells the browser required HTML
version for rendering

<!DOCTYPE html>

<!doctype html>

DOM Basics - intro

A brief introduction to the document object model (DOM)

HTML DOM

Source - W3Schools - JS HTML DOM

http://www.w3schools.com/js/js_htmldom.asp

DOM Basics - what is DOM?

DOM is a platform and language independent way
to access and manipulate underlying structure of HTML document

structured as a representation of a tree data structure
its manipulation follows this same, standard principle

DOM tree is constructed using a set of nodes
tree is designed as a hierarchical representation of the underlying
document

each node on our tree is an element within our HTML document

inherent hierarchical order originates with the root element
root sits at the top of our tree

descends down following lineage from node to node

each node is a child to its parent
we can find many siblings per node as well

root at the top of the tree…

Image - HTML DOM

HTML DOM

DOM Basics - useful elements

element tag usage & description

<html> container element for a HTML document

<head> contains metadata and document information

<body> contains main content rendered as the HTML document

<header> page header…

<nav> navigation, stores and defines a set of links for internal or
external navigation

<main> defined primary content area of document

<footer> page footer…

<section> a section of a page or document

<article> suitable for organising and containing independent content

<aside> defines content aside from the content which contains this
element

<figure> logical grouping of image and caption

 image - can be local or remote using url in src attribute

<figcaption> image caption

<h1>,
<h2>... headings from 1 to 6 (1 = largest)

<a> anchor - link to another anchor, document, site…

<p> paragraph

, ,
<dl> unordered, ordered, definition lists

 list item, used with , ...

<dt> definition term, used with <dl>

<dd> definition description, used with <dl>

<table> standard table with rows, columns…

element tag usage & description

<tr> > table row, used with <table>

<th> table heading, used with <table> and child to <tr>

<td> table cell, used with <table> and child to <tr>

<div> non-semantic container for content, similar concept to
<section>

 group inline elements in a HTML document

<canvas> HTML5 element for drawing on the HTML page

<video> HTML5 element for embedding video playback

<audio> HTML5 element for embedding audio playback

NB: <div> and can be used as identifiers when there is no

other suitable element to define parts of a HTML5 document. e.g. if

there is no defined or significant semantic meaning…

DOM Basics - sample

Demo - DOM Basics - Sample

<!DOCTYPE html>

<html>

 <head>

 <base href="media/images/">

 <meta charset="UTF-8">

 <!-- week 3 - demo 1 -->
 <title>Week 3 - Demo 1</title>

 </head>

 <body>

 <header>

 <h1>Ancient Egypt</h1>

 </header>

 <nav>...</nav>

 <main>

 <section>

 <p>

 Welcome to the Ancient Egypt information site.

 </p>

 <figure>

 <img src="philae-demo2.jpg" alt="philae temple" width="333px"

 height="200px">

 <figcaption>Ptolemaic temple at Philae, Egypt</figcaption>

 </figure>

 </section>

 <aside>

 Temple at Philae in Egypt is Ptolemaic era of Egyptian history.

 </aside>

 </main>

 <footer>

 foot of the page...

 </footer>

 </body>

</html>

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo1/

DOM Basics - index.html page

index.html usage and structure

basic index.html page for loading web apps

app will start with the index.html document
html pages saved as .html or .htm
.html more common…

index.html acts as a kickstart
for loading and rendering the app

loads other app resources - CSS, JS…

consistent elements in the HTML DOM
<html>, <head>, and <body>

HTML5 apps will add
<header>, <main>, and <footer> (when required)

many other elements for building the app…

HTML Basics - metadata & <head> element - part 1

part of a HTML document’s metadata

allows us to set metadata for a HTML page

customised just for that page or replicated as a site-wide
implementation

we can add numerous additional elements to <head>

add similar links and code for JavaScript
use the <script> element & attributes such as type and src
HTML4 requires type and src
HTML5 requires src

<!-- HTML4 and XHTML -->
<script type="text/javascript" src="script.js"></script>

<!-- HTML5 -->
<script src="script.js"></script>

HTML Basics - metadata & <head> element - part 2

add a <title> element with text added as the element content
shown in the browser tab or window heading

set a default base address for all relative URLs in links within
our HTML

links now simply use the base URL or override with full URL

<meta /> adds metadata about the HTML document

<title>Our Page Title</title>

<base href="/media/images/" target="_blank">

Flickr

<meta name="description" content="The Glass Bead Game" />

<meta name="keywords" content="novel, fiction, herman hesse, electronic edition" />

HTML - <head> element example

<head>

 <meta charset="utf-8">

 <title>Sample...</title>

 <meta name="description" content="sample metadata">

 <meta name="author" content="COMP424">

 <link href="style.css" rel="stylesheet">

 <script src="script.js"></script>

</head>

HTML Basics - <body> - part 1

intro

to define the main body of the web page we use the <body>
element

headings can be created using variants of
<h1>, <h2>.....<h6>

we can now add some simple text in a <p> element

add a line break using the
 element

 for strict XHTML void

<hr> element adds a horizontal line
<hr /> for strict XHTML void

implies rendering division

instead of defined structural divide…

comments can also be added through our HTML

<p>...</p>

<!-- comment... -->

HTML Basics - <body> - part 2

linking

linking is an inevitable part of web design and HTML usage

can be considered within three different contexts
linking to an external site

linking to another page within the same site

linking different parts of the same page

add links to text and images within the HTML

<a> element for links plus required attributes, e.g.

Demo - HTML - Internal Anchor

<!-- external link -->
Google

<!-- email link -->
Email

<!-- internal page link -->
another page

<!-- define internal anchor - using name attribute -->
Internal anchor

<!-- define internal anchor - using ID attribute -->
Anchor

<!-- internal anchor link -->
Visit internal anchor

<!-- internal anchor link on another page -->
Visit internal anchor

<!-- internal anchor link on a page on an external site -->
Visit internal anchor on external site

http://linode4.cs.luc.edu/teaching/cs/demos/424/demo10/

HTML Basics - <body> - part 3

linking - cont’d

standard attributes supported by <a> element include
class, id, lang, style, title...

optional attributes are available for <a> element including
target, href, name...

target attribute specifies where the link will be opened relative
to the current browser window

possible attribute values include

Demo - HTML - Internal Anchors with Scroll

<!-- open link in new window or tab -->
_blank

<!-- same frame -->
_self

<!-- open within parent frameset -->
_parent

<!-- open in the same window -->
_top

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/

HTML Basics - <body> - part 4

images

 allows us to embed an image within a web page

 element requires a minimum src attribute

other optional attributes include
class, id, alt, title, width, height...

use images as links

image maps

Demo - Woolf Online

<map name="textmap">

 <area shape="rect" coords="..." alt="Quote 1" href="notes1.html" />

</map>

http://www.woolfonline.com/?node=content/image/gallery&project=1&parent=2&taxa=6&content=339&pos=7

HTML Basics - <body> - part 5

tables

organise data within a table starting with the <table> element

three primary child elements include
table row, table header, table data

<tr>, <th>, <td>

also add a <caption>

span multiple columns using the colspan attribute

span multiple rows using the rowspan attribute

Demo - Basic Structural Example

<table>

 <caption>424 - basic test table</caption>

 <tr>

 <th>heading 1</th>

 <th>heading 2</th>

 </tr>

 <tr>

 <td>row 1, cell 1</td>

 <td>row 2, cell 2</td>

 </tr>

</table>

https://luc-metrics.herokuapp.com/stats/astropy

Demos

Basic Attribute

Basic Attribute 2

Basic Structural Example

DOM Basics - Sample

HTML - Internal Anchor

HTML - Internal Anchors with Scroll

Woolf Online

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute2/
https://luc-metrics.herokuapp.com/stats/astropy
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/demo10/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/
http://www.woolfonline.com/?node=content/image/gallery&project=1&parent=2&taxa=6&content=339&pos=7

Resources

Jaffe, Jim., Application Foundations For The Open Web

Platform. W3C. 10.14.2014.
http://www.w3.org/blog/2014/10/application-foundations-for-the-
open-web-platform/

MDN - Using Dynamic Styling Information

The Unicode Consortium

Unicode Information
Unicode examples

W3 Docs for further details

http://www.w3.org/blog/2014/10/application-foundations-for-the-open-web-platform/
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information
http://www.unicode.org/
http://www.alanwood.net/unicode/
http://www.alanwood.net/unicode/unicode_samples.html
http://www.w3.org/TR/html-markup/syntax.html#syntax-attributes

