Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 10

Dr Nick Hayward



ES6 Generators & Promises - intro

= generators and promises are new to plain JavaScript
e /ntroduced with ES6 (ES2015)

= Generators are a special type of function
e produce multiple values per request
e suspend execution between these requests

m generators are useful to help simplify convoluted loops

e suspend and resume code execution, &c.
o helps write simple, elegant asyrnc code

= Promises are a new, built-in object
» help development of async code

= promise becomes a placeholder for a value not currently available
e but one that will be available later



ES6 Generators & Promises - async code and
execution

= JS relies on a single-threaded execution model

= query a remote server using standard code execution

o block the Ul until a response is received and various operations
completed

= we may modify our code to use callbacks
* /nvoked as a task completes
e should help resolve blocking the U/

= callbacks can quickly create a spaghettimess of code, error
handling, logic...

m  Generators and Promises
e elegant solution to this mess and proliferation of code



ES6 Generators & Promises - promises - intro

= a promiseis similar to a placeholder for a value we currently do
not have
e but we would like later..

= jt's a guarantee of sorts
o eventually receive a result to an asynchronous request, computation, &c.

= 3 result will be returned
e ejther a value or an error

= we commonly use promises to fetch data from a server
e felch local and remote data
e fefch data from APls



ES6 Generators & Promises - promises - example

// use built-in Promise constructor - pass callback function with two parameters (resolve &
reject)

const testPromise = new Promise((resolve, reject) => {
resolve("test return");
// reject("an error has occurred trying to resolve this promise...");

s

// use “then method on promise - pass two callbacks for success and failure
testPromise.then(data => {

// output value for promise success
console.log("promise value = "+data);

}, err => {
// output message for promise failure
console.log("an error has been encountered...");

1)

= use the built-in Promise constructor to create a new promise
object

= then pass a function
e g slandard arrow function in the above example



ES6 Generators & Promises - promises - executor

= function for a Promise is commonly known as an executorfunction
* /ncludes two paramelers, resolve andreject

= executorfunction is called immediately
e as the Promise object is being constructed

= resolve argument is called manually
o when we need the promise to resolve successfully

= second argument, reject, will be called if an error occurs

= uses the promise by calling the built-in then method
e gvallable on the promise object

= then method accepts two callback functions
e success and failure

= success is called if the promise resolves successfully
= the failure callback is available if there is an error



ES6 Generators & Promises - promises - example

explicit use of resolve

/*

* promisel.js

* wrap Array in Promise using resolve()...
*/

let testArray = Promise.resolve(['one', 'two', 'three']);

testArray.then(value => {
console.log(value[@]);

// remove first item from array
value.shift();

// pass value to chained ~then”
return value;

)

.then(value => console.log(value[©]));

= Demo - Promise.resolve


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-resolve/

ES6 Generators & Promises - promises - callbacks &
async

= async code is useful to prevent execution blocking
e potential delays in the browser
e e.g. as we execute long-running tasks

= jssue is often solved using callbacks
e /e. provide a callback that's invoked when the task is completed

= such long running tasks may result in errors

= jssue with callbacks
e e.g. we can’t use built-in constructs such as try-catch statements



ES6 Generators & Promises - promises - callbacks &
async - example

try {
getJSON("data.json", function() {
// handle return results...

})s
} catch (e) {

// handle errors...

}

= this won’t work as expected due to the code executing the
callback
e not usually executed in the same step of the event loop
e may not be in sync with the code running the long task

= errors will usually get lost as part of this long running task
= another issue with callbacks is nesting
= a third issue is trying to run parallel callbacks

= performing a number of parallel steps becomes inherently tricky
and error prone



ES6 Generators & Promises - promises - further details

= a promise starts in a pending state
» we know nothing about the return value
e promise Is often known as an unresolved promise

= during execution
e /fthe promise’s resolve function is called
e the promise will move into its fulfilled state
e the return value is now available

= if there is an error or refect method is explicitly called
e the promise will simply move into a rejected state
e return value is no longer available
e an error now becomes available

= either of these states
e the promise can now no longer switch state
e /e from rejected to fulfilled and vice-versa...



ES6 Generators & Promises - promises - concept
example

an example of working with a promise may be
as follows

= code starts (execution is ready)
= promise is now executed and starts to run
= promise object is created

= promise continues until it resolves
e successful return, artificial timeout &c.

= code for the current promise is nhow at an end

= promise is now resolved
e value is available in the promise

= then work with resolved promise and value
e callthen method on promise and returned value...
e this callback is scheduled for successful resolve of the promise

o this callback will always be asynchronous regardless of state of
promise...



ES6 Generators & Promises - promises - callbacks &
async - example

promise from scratch

/*

* promisefromscratch-delay.js

* create a Promise object from scratch...use delay to check usage

* promise may only be called once per execution due to delay and timeout...
*/

// check promise usage relative to timer...either timeout will cause the Promise to call and
end

function resolveWithDelay(delay) {
return new Promise(function(resolve, reject) {
// log Promise creation...
console.log('promise created...waiting');
// resolve promise if delay value is less than 3000
setTimeout (function() {
resolve(” promise resolved in ${delay} ms’);
}, delay);
// resolve promise if delay is greater than 3000
setTimeout (function() {
resolve(” promise resolved in 3000ms”);
}, 3000);

1)

// fulfilled with delay of 2000 ms

resolveWithDelay(2000).then(function(value) {
console.log(value);

3

// fulfilled with default timeout of 3000 ms

// resolveWithDelay(66000).then(function(value) {

// console.log(value);

/7 });

= Demo - Promise from scratch


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-scratch/

ES6 Generators & Promises - promises - explicitly
reject

= two standard ways to reject a promise
e e.g. explicit refection of promise

const promise = new Promise((resolve, reject) => {
reject("explicit rejection of promise");

1)

= once the promise has been rejected
e an error callback will always be invoked
o e.g. through the calling of the then method

promise.then(
() => fail("won't be called..."),
error => pass("promise was explicitly rejected...");

)5
= also chain a catch method to the then method
= as an alternative to the error callback. e.g.
promise.then(

() => fail("won't be called..."))
.catch(error => pass("promise was explicitly rejected..."));



ES6 Generators & Promises - promises - example

promise error handling

/*
* promise-basic-errorl.js

* basic example usage of promise error handling and order

*/
Promise
.resolve(1)
.then(x => {
if (x === 2) {
console.log('val resolved as', x);
} else {
throw new Error('test failed...")
}
D)

.catch(err => console.error(err));

= Demo - Promise error handling with catch


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-error/

ES6 Generators & Promises - promises - real-world
promise - getJSON

// create a custom get json function
function getJSON(url) ({
// create and return a new promise
return new Promise((resolve, reject) => {
// create the required XMLHttpRequest object
const request = new XMLHttpRequest();
// initialise this new request - open
request.open("GET", url);
// register onload handler - called if server responds
request.onload = function() {

try {
// make sure response is OK - server needs to return status 200 code...
if (this.status === 200) {

// try to parse json string - if success, resolve promise successfully with value
resolve(JSON.parse(this.response));

} else {
// different status code, exception parsing JSON &c. - reject the promise...
reject(this.status + " " + this.statusText);
}
} catch(e) {
reject(e.message);
}
};

// if error with server communication - reject the promise...
request.onerror = function() {

reject(this.status + + this.statusText);

}s

// send the constructed request to get the JSON
request.send();

1)



ES6 Generators & Promises - promises - real-world
promise - usage

// call getJSON with required URL, then method for resolve object, and catch for error
getISON("test.json").then(response => {

// check return value from promise...
response !== null ? "response obtained" : "no response";
}).catch((err) => {

// Handle any error that occurred in any of the previous promises in the chain.

console.log('error found = ', err); // not much to show due to return of jsonp from
flickr...

s



ES6 Generators & Promises - promises - chain

= calling then on the returned promise creates a new promise

= f this promise is now resolved successfully
e we can then register an additional callback

= we may now chain as many then methods as necessary

= create a sequence of promises
e each resolved &c. one after another

= instead of creating deeply nested callbacks
e simply chain such methods to our initial resolved promise

= to catch an error we may chain a final catch call

= to catch an error for the overall chain
e yse the catch method for the overall chain

getJSON() .then()
.then()

.then()
.catch((err) => {

// Handle any error that occurred in any of the previous promises in the chain.
console.log('error found = ', err); // not much to show due to return of jsonp from
flickr...

s

= if a failure occurs in any of the previous promises
e the catch method will be called



ES6 Generators & Promises - promises - wait for
multiple promises

= promises also make it easy to wait for multiple, independent
asynchronous tasks

= with Promise.all, we may wait for a number of promises

// wait for a number of promises - all

Promise.all([

// call getJSON with required URL, “then method for resolve object, and “catch” for error
getJSON("notes.json"),

getJSON("metadata.json")]).then(response => {

// check return value from promise...response[0] = notes.json, response[1] = metadata.json
&c.

if (response[0] !== null) {
console.log("response obtained");
console.log("notes = ", JSON.stringify(response[0]));
console.log("metadata = ", JSON.stringify(response[1]));

}
}).catch((err) => {

// Handle any error that occurred in any of the previous promises in the chain.

console.log('error found = ', err); // not much to show due to return of jsonp from
flickr...

1)

m order of execution for tasks doesn’t matter for Promise.all

= by using the Promise.all method
e we are simply stating that we want to walt..

= Promise.all accepts an array of promises
e then creates a new promise
o promise will resolve successfully when all passed promises resolve

= it will reject if a single one of the passed promises fails

= return promise is an array of succeed values as responses
e /e. one succeed value for each passed in promise



ES6 Generators & Promises - promises - racing
promises

= Wwe may also setup competing promises
o with an effective prize to the first promise to resolve or reject
o might be useful for querying multiple APls, databases, &c.

Promise.race(

[
// call getJISON with required URL, ~then~ method for resolve object, and "catch” for error

getISON("notes.json"),
getJSON("metadata.json")]).then(response => {
if (response !== null) {
console.log( response obtained - ${response} won... );
}
}).catch((err) => {
// Handle any error that occurred in any of the previous promises in the chain.
console.log('error found = ', err); // not much to show due to return of jsonp from
flickr...
1)
)

= method accepts an array of promises
e returns a completely new resolved or rejected promise
e retumns for the first resolved or rejected promise



ES6 Generators & Promises - promises - Fetch API

= MDN - Fetch API


https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

ES6 Generators & Promises - promises - Fetch API -
Example

basic usage

/*
* fetch-basicl.js

* basic example usage of Fetch API...
*/

fetch('./assets/notes.json")
.then(response => {

return response.json();

1))
.then(myJSON => {

console.log(myJSON);
})s

= Demo - Fetch API - basic usage


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/basic.html

ES6 Generators & Promises - promises - Fetch API -
Example

catching errors

/*

* fetch-basic-errorl.js

* basic example usage of Fetch API...chain “catch® to “then” for error handling
*/

fetch('./assets/item.json")

.then(response => {

// reactions passed to “then" used to handle fulfillment of a promise
return response.json();

)

.then(myJSON => {
console.log(myJSON);

1)

.catch(err => {

// reactions passed to “catch™ executed with a rejection reason...
console.log( error detected - ${err} );

1)

= Demo - Fetch API - catching errors


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/basic-error1.html

ES6 Generators & Promises - promises - Fetch API -
Example

Fetch with Promise all

/*
* fetch-promise-all.js

* basic example usage of Promise.all...using Fetch API
*/

Promise
Lall([

fetch('./assets/items.json"),
fetch('./assets/notes.json")
D
.then(responses =>
Promise.all(responses.map(res => res.json()))
).then (json => {
console.log(json);

s

= Demo - Fetch API - Promise all


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/promise-all.html

ES6 Generators & Promises - promises - Fetch API -
Example

Fetch with Promise race

/*
* fetch-promise-race.js
* basic example usage of Promise.race...using Fetch API
*/
Promise
.race([

fetch('./assets/items.json"),
fetch('./assets/notes.json')

D
.then(responses => {

return responses.json()

1}

.then(res => console.log(res));

= Demo - Fetch API - Promise race


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/promise-race.html

ES6 Generators & Promises - generators

= a generatorfunction generates a sequence of values
e commonly not all at once but on a request basis

= generator is explicitly asked for a new value
e returns either a value or a response of no more values

= after producing a requested value
e g generator will then suspend instead of ending its execution
e generator will then resume when a new value is requested



ES6 Generators & Promises - generators - example

//generator function
function* nameGenerator() {
yield "emma";
yield "daisy";
yield "rosemary";

}

= define a generator function by appending an asterisk after the
keyword
e function* ()

= use the yield keyword within the body of the generator
e [o request and retrieve individual values

= then consume these generated values using a standard loop
e or perhaps the new for-of loop



ES6 Generators & Promises - generators - iterator
object

= if we make a call to the body of the generator
e an iterator object will be created

= we may now communicate with and control the generator using
the iterator object

//generator function
function* NameGenerator() {
yield "emma";
}
// create an iterator object
const nameIterator = NameGenerator();

= jterator object, nameIterator, exposes various methods
including the next method



ES6 Generators & Promises - generators - iterator
object - next()

= use next to control the iterator, and request its next value

// get a new value from the generator with the 'next' method
const namel = nameIterator.next();

= next method executes the generator’s code to the next yield
expression

= jt then returns an object with the value of the yield expression
e and a property done set to false if a value is still available

= done boolean will switch to #we if no value for next requested yield

= done is set to frue
 the iterator for the generator has now finished



ES6 Generators & Promises - generators - iterate over
iterator object

= jterate over the iterator object
e return each value per available yield expression
e e.g. use the for-of loop

// iterate over iterator object
for(let iteratorItem of NameGenerator()) {
if (iteratorItem !== null) {
console.log("iterator item = "+iteratorItem+index);
}
}



ES6 Generators & Promises - generators - call
generator within a generator

= we may also call a generator from within another generator

//generator function
function* NameGenerator() {
yield "emma";
yield "rose";
yield "celine";
yield* UsernameGenerator();
yield "yvaine";

}

function* UsernameGenerator() {
yield "frisby67";
yield "trilby72";

}

= we may then use the initial generator, NameGenerator, as normal



ES6 Generators & Promises - generators

example - pass generator to function

function getRandomNote(gen) {

console.log( getRandomNote called... );
const g = gen();
fetch('./assets/input/notes.json’, {

headers: new Headers({

Accept: 'application/json'

)]

)]

.then(res => res.json())
.then(json => {
return g.next(json);

1}

.catch(err => g.throw(err))

}

getRandomNote(function* printRandomNote() {
console.log(" generator function executes...’);
const json = yield;

1)

= Demo - Generators - pass generator to function


http://linode4.cs.luc.edu/teaching/cs/demos/422/async-options/

ES6 Generators & Promises - generator - recursive
traversal of DOM

= document object model, or DOM, is tree-like structure of HTML
nodes

= every node, except the root, has exactly one parent
e and the potential for zero or more child nodes

= We may now use generators to help iterate over the DOM tree

// generator function - traverse the DOM
function* DomTraverseGenerator(htmlElem) {
yield htmlElem;
htmlElem = htmlElem.firstElementChild;
// transfer iteration control to another instance of the
// current generator - enables sub iteration...
while (htmlElem) {
yield* DomTraverseGenerator(htmlElem);
htmlElem = htmlElem.nextElementSibling;

}
}

= benefit to this generator-based approach for DOM traversal
e callbacks are not required

= able to consume the generated sequence of nodes with a simple

loop
e and without using callbacks

= able to use generators to separate our code
e code that is producing values - e.qg. HTML nodes
e code consuming the sequence of generated values



ES6 Generators & Promises - traversal with generators

= traversed using depth-first search

= algorithm tries to go deeper into tree structure
e when it can’t it moves to the next child in the list

= e.g. define a class to create a Node
e creates with value and arbitrary amount of child nodes

// Node class - holds a value and arbitrary amount of child nodes...
class Node {
constructor(value, ...children) {
this.value = value;
this.children = children;
}
}

Then, we create a basic node tree,

// define basic node tree - instantiate nodes from
const root = new Node(1,
new Node(2),
new Node(3,
new Node(4,
new Node(5,
new Node(6)
)
new Node(7)
)
)

new Node(8,
new Node(9),
new Node(10)
)
)

= various implementations we might create for a traversal
generator...






ES6 Generators & Promises - generator function

e.g. depth first generator function for traversing the tree

// FN: depthFirst generator
function* depthFirst(node) {
yield node.value;
for (const child of node.children) {
yield* depthFirst(child);
}
}

// log tree recursion
console.log([...depthFirst(root)]);



ES6 Generators & Promises - generator - exchange
data with a generator

= also send data to a generator
= enables bi-directional communication

= 3 pattern might include
e request dala
e then process the data
e then return an updated value when necessary to a generator



ES6 Generators & Promises - generator - exchange
data with a generator - example

// generator function - send data to generator - receive standard argument
function* MessageGenerator(data) {

// yield a value - generator returns an intermediator calculation

const message = yield(data);

yield("Greetings, "+ message);

}

const messageIterator = MessageGenerator("Hello World");
const messagel = messagelterator.next();
console.log("message = "+messagel.value);

const message2 = messageIterator.next("Hello again");
console.log("message = "+message2.value);

= first call with the next () method requests a new value from the
generator
e returns initial passed argument
e generator Is then suspended

= second call using next () will resume the generator, again
requesting a new value

= second call also sends a new argument into the generator using
the next () method

= newly passed argument value becomes the complete value for
this yield
e replacing the previous value Hel Lo World

= we can achieve the required bi-directional communication with a
generator

= use yield to return data from a generator

= then use iterator’s next () method to pass data back to the
generator



ES6 Generators & Promises - generator - detailed
structure

Generators work in a detailed manner as
follows,

= suspended start
e none of the generator code is executed when it first starts

= executing

e execution either starts at the beginning or resumes where it was /last
suspended

e Stale is created when the iterators next () method is called
e code must exist in generator for execution

= suspended yield

whilst executing, a generator may reach yield

it will then create a new object carrying the return value
it will yield this object

then suspends execution at the point of the yield..

= completed
e greturn statement or lack of code to execute
o this will cause the generator to move to a complete state



ES6 Generators & Promises - generators & iterables

fibonacci number generator

= example generator for Fibonacci sequence

= generator will output an infinite sequence of numbers

= we may also call individual iterations of the sequence

e.g.

// generator function - value per iteration & done will not return true...

function* fibonacci() {

}

// define start values for fibonacci sequence

let previous = 0;

let current = 1;

// Lloop will continue to iterate fibonacci sequence
while(true) {

// return current value in fibonacci sequence

yield current;

// compute next value for sequence...

const next = current + previous;

// update values for next iteration of loop in fibonacci sequence
previous = current;

current = next;

}

// instantiate iterator object using fibonacci generator
const g = fibonacci();

// call iterator
console.log(g.next());

= to improve performance, and prevent memory and execution

timeout

add memoisation to script
a lype of local cache for the execution of the algorithm...



ES6 Generators & Promises - async I/O using
generators

= Use generators and generator helpers to create simple async
input and output
» use with saving data &c.
e g consistent and abstracted usage design for a custom generator

// called with passed generator function
function saveItems(itemList) {

const items = [];

const g = itemList();

return more(g.next());

function more(item) {

if (item.done) {
return save(item.value);

}

return details(item.value);
}
function details(endpoint) {
// check inputs are called & location...
console.log( details called - ${endpoint} );
return fetch(endpoint)
.then(res => res.json())
.then(item => {
items.push(item);
return more(g.next(item));
})
}

function save(endpoint) {
// check output is called & Llocation...
console.log( save endpoint - ${endpoint} );
/*return fetch(endpoint, {
method: 'POST',
body: JSON.stringify({ items })
y9)
.then(res => res.json());*/
}
}

saveItems(function* () {
yield './assets/input/items.json’';
yield './assets/input/notes.json’';



I return './assets/output/journal.json';
1))




ES6 Generators & Promises - promises - combine
generators and promises

an example usage for generators and
promises,

= async function takes a generator, calls it, and creates the required
/terator
e use iterator to resume generator execution as needed

e declare a handle function - handles one return value from generator
o one iteration of iterator

o /fgenerator result is a promise & resolves successftully - use iterator’s

next method
o promise value sent back to generator
o generator resumes execution

e /ferror, promise gets rejected
o error thrown to generator using iterator’'s throw method

e continue generator execution until it returns done

= generator - executes up to each yield getJSON()
e promise created for each getJSON() call
e value is fetched async - generator is paused whilst fetching value...

e control flow is returned to current invocation point in handle function
whilst paused

= handle function
» yielded value to handle function is a promise

e able to use then and catch methods with promise object
o registers success and error callback
o execution is able to continue



ES6 Generators & Promises - lots of examples

e.g.

= generator
e basic
e basic-iterator
e basic-iterator-over
e basic-loop
e basic-dom
e basic-send-data
e basic-send-data-2

= promises
e basic
e basic-cors-flickr
e basic-xhr-local
e basic-promise-all
e basic-promise-race

= generator & promise - async
e basic



ES2017 Async & Await

= in ES2017, JavaScript gained native syntax to describe
asynchronous operations

= NOW use async/awaitto work with asynchronous operations

= Async functions allow developers to take a promise-based
implementation
e then use synchronous-like patterns of a generator
e e.g. async implementation with sync usage patterns...

= await may only be used inside async functions
e denoted with the async keyword

= async function works in a similar manner to standard generators
e e.g. suspending execution in local context until a promise settles

= f awaited expression is not originally a promise object
o Jt will be cast to a promise in this context..



ES2017 Async & Await - example 1

= example usage with try/catch

async function read() {
// use try/catch to handle errors in awaited promises within async function
try {
const model = await getRandomBook();
} catch (err) {
console.log(err);
}
}

// call function as usual
read();

= use return Promise object

async function read() {
const model = await getRandomBook();
}
// call function as usual - work with return promise object...
read()
.then()



ES2017 Async & Await - example 2

Node.js and command line

= example usage with command line arguments
e custom Promise object
e async/await with try/catch block
e /nitial error handling

/*
* basic-error.js
* - error handling for async...

*/

function getArgs() {
// Node Process command Line arguments
const args = process.argv;
// custom Promise object with resolve and reject
return new Promise((resolve, reject) => {

if (args[2] === 'test') {
resolve(args);

} else {
reject('no args');

}

})s
}

async function main() {
try {
let data = await getArgs();
return data;
} catch(e) {
throw new Error( main failed...${e} );
}
}

main()
.then(console.log)
.catch(console.log);



ES2017 Async & Await - example 3

initial fetch

// FN: 'fetch' from JSON
function getNotes() {
return fetch('./assets/files/notes.json", {
headers: new Headers({
Accept: 'application/json'
)]
9]
.then(res => res.json());

}



ES2017 Async & Await - example 4

= example fetch usage

/*

* basic-asyncl.js

* async called with sync-like try/catch block

* 'awaits' return from fetch to Local JSON file
*/

// FN: 'fetch' from JSON
function getNotes() {
return fetch('./assets/files/notes.json’, {
headers: new Headers({
Accept: 'application/json’
})
9]
.then(res => res.json());

}

// EN: async/await
async function read() {
try {
const notes = await getNotes();
console.log( notes FETCH successful’);
} catch (err) {
console.log(err);
}
}

read();

= Demo - Async & Await - Fetch example


http://linode4.cs.luc.edu/teaching/cs/demos/422/async-await/basic-async1.html

ES2017 Async & Await - example 5 - part 1

sample iterable functions

/*

* FNs: iterable computed data

* functions support all major ES6 data structures
* - arrays, typed arrays, maps, sets...

*/

// FN: iterable entries() - default iterator for data structure entries
function dataEntryIterator(data) {
for (const pair of data.entries()) {
console.log(pair);

// FN: iterable kReys() - default iterator for data structure Reys
function dataKeysIterator(data) {
for (const key of data.keys()) {
console.log(key);

// FN: iterable values() - default iterator for data structure values
function datavaluesIterator(data) {
for (const value of data.values()) {
console.log(value);



ES2017 Async & Await - example 5 - part 2

async and await usage - a bit of fun...

// FN: async/await
async function read() {
try {
// await return from FETCH for notes.json file
const data = await getNotes();
const notes = data['notes’'];
// wrap return notes array in iterator
const iter = notes[Symbol.iterator]();
// test iterator with next for each result...
console.log(iter.next());
console.log(iter.next());
console.log(iter.next());
console.log(iter.next());
console.log( notes FETCH successful’);
dataEntryIterator(notes);
dataKeysIterator(notes);
datavaluesIterator(notes);
} catch (err) {
console.log(err);

read();

= Demo - Async & Await - example with iterables


http://linode4.cs.luc.edu/teaching/cs/demos/422/async-await/basic-async2.html

Demos

= Fetch API
e basic usage
e calching errors
o Fetch APl & Promise.all
o Fetch APl & Promise.race

= Generators - plain JS
e Basic
e Basic lterator
e Basic Ilterator Over
e Basic DOM Traversal
e Basic Send Data
e Basic Send Data 2
e Pass generator to function

= Promises - plain JS
e Basic
e Basic CORS Flickr
e Basic Promise All
e Basic Race
e Basic XHR Local
o Promise error handling with catch
e Promise from scratch
e Promise.resolve


http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/basic.html
http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/basic-error1.html
http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/promise-all.html
http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/promise-race.html
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/generators/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/generators/basic-iterator/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/generators/basic-iterator-over/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/generators/basic-dom/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/generators/basic-send-data/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/generators/basic-send-data-2/
http://linode4.cs.luc.edu/teaching/cs/demos/422/async-options/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/promises/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/promises/basic-cors-flickr/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/promises/basic-promise-all/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/promises/basic-race/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/promises/basic-xhr-local/
http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-error/
http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-scratch/
http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-resolve/

Resources

= jQuery

JQuery

JQuery AP/

JQuery - deferred
JQuery - .getJSON()
JQuery - JSONP
JQuery - promise

= MDN
e MDN -JS
e MDN - JS Const
o MDN - JS - lterators and Generators
e MDN - JS Objects


https://jquery.com/
https://api.jquery.com/
https://api.jquery.com/jquery.deferred/
http://api.jquery.com/jQuery.getjson/
https://learn.jquery.com/ajax/working-with-jsonp/
https://api.jquery.com/promise/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

