Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 12

Dr Nick Hayward

JS Server-side considerations - save data

save JSON in travel notes app

= need to be able to save our simple notes

= now load from a JSON file as the app starts
e also we can add new notes, delete existing notes...

= not as simple as writing to our existing JSON file direct from JS
e security implications If that was permitted directly from the browser

= need to consider a few server-side options

= could use a combination of PHP on the server-side
o with AJAX jQuery on the client-side
e [raditional option with a simple ajax post to a PHP file on the server-side

= consider JavaScript options on the client and server-side
= brief overview of working with Node.js

Server-side considerations - intro

= normally define computer programs as either client-side or server-
side programs
= server-side programs normally abstract a resource over a network

e enabling many client-side programs to access at the same time
e g common example is file requests and transfers

= we can think of the client as the web browser
= a web server as the remote machine abstracting resources

= abstracts them via hypertext transfer protocol
o HTTP for short

= designed to help with the transfer of HTML documents

o HTTP now used as an abstracted wrapper for many different types of
resources

e may include documents, media, databases...

Image - Client-side and server-side computing

| client-side | G e e | server-side |
| | network | |
|- | protocol | ———

client-side & server-side

Server-side considerations - Node.js

intro - what is Node.js?

= Node.js is, in essence, a JavaScript runtime environment
e designed to be run outside of the browser

= designed as a general purpose utility

= can be used for many different tasks including
e gsset compilation
e monitoring
e Scripting
e web servers

= with Node.js, role of JS is changing
e moving from client-side to a support role in back-end development

Server-side considerations - Node.js

intro - speed of Node.js

= a key advantage touted for Node.js is its speed

= many companies have noted the performance benefits of
implementing Node.js
e /ncluding PayPal, Walmart, Linkedin...

= a primary reason for this speed boost is the underlying
architecture of Node.js

Node.js uses an event-based architecture

instead of a threading model popular in compiled languages

Node.js uses a single event thread by default

all I/O is asynchronous

Server-side considerations - Node.js

intro - conceptual model for processing in Node.js

= how does Node.js, and its underlying processing model, actually
work?

= client sends a hypertext transfer protocol, HTTP, request
e request or requests sent to Node.js server

= event loop is then informed by the host OS
e passes applicable request and response objects as JavaScript closures
e passed to associated worker functions with callbacks

= |ong running jobs continue to run on various assigned worker
threads

= responses are sent from the non-blocking workers back to the
main event loop
o returned via a callback

= event loop returns any results back to the client
o effectively when they're ready

Image - Client-side and server-side computing

|

| non-blocking | | |

| worker | S=———— | event loop | =———— |
| | | (single thread) |

| Ea

Node.js - conceptual model for processing

Server-side considerations - Node.js

intro - threaded architecture

= concurrency allows multiple things to happen at the same time

= common practice on servers due to the nature of multiple user
queries

= Java, for example, will create a new thread on each connection
e threading is inherently resource expensive

= size of a thread is normally around 4MB of memory

= naturally limits the number of threads that can run at the same
time
= also inherently more complicated to develop platforms that are

thread-safe
» thereby allowing for such functionality

= due to this complexity

e many languages, eqg: Ruby, Python, and PHP, do not have threads that
allow for real concurrency

e without custom binaries

= JavaScript is similarly single-threaded
e able to run multiple code paths in parallel/ due to events

Server-side considerations - Node.js

intro - event-driven architecture

= JavaScript originally designed to work within the confines of the
web browser

= had to handle restrictive nature of a single thread and single
process for the whole page

= synchronous blocking in code would lock up a web page from all
actions
o JavaScript was built with this in mind

= due to this style of I/O handling

o Node.ss is able to handle millions of concurrent requests on a single
process

= added, using libraries, to many other existing languages
o Akka for Java
o EventMachine for Ruby
o Twisted for Python

= JavaScript syntax already assumes events through its use of
callbacks

= NB: if a query etc is CPU intensive instead of I/O intensive
o thread will be tied up
o everything will be blocked as it waits for it to finish

Server-side considerations - Node.js

intro - callbacks

= in most languages
e send an /O query & wait until result is returned
e walit before you can continue your code procedure

= for example, submit a query to a database for a user ID

o server will pause that thread/process until database returns result for ID
query

= in JS, this concept is rarely implemented as standard
= in JS, more common to pass the I/O call a callback

= in JS, this callback will need to run when task is completed

e eg. find a user ID and then do something, such as output to a HTML
element

= biggest difference in these approaches
o whilst the database is fetching the user ID query
o thread is free to do whatever else might be useful
» eg. accept another web request, listen to a different event..

= this is one of the reasons that Node.|s returns good benchmarks
and is easily scaled

= NB: makes Node.js well suited for I/O heavy and intensive
scenarios

Server-side considerations - Node.js

install Node.js

= a number of different ways to install Node.js, npm, and the
lightweight, customisable web framework Express

= run and test Node.js on a local Mac OS X or Windows machine

= download and install a package from the following URL
e Node.js - download

= jnstall the Node module, Express

= Express is a framework for web applications built upon Node.js
e minimal, flexible, & easily customised server

= use npmto install the Express module

npm install -g express

= -g option sets a global flag for Express instead of limited local
install

= installs Express command line tool
e allows us to start building our basic web application

= now also necessary to install Express application generator

npm install -g express-generator

https://nodejs.org/en/download/

Server-side considerations - Node.js

NPM - intro

= npm is a package manager for Node.js

= Developers can use npm to share and reuse modules in Node.js
applications

= npm can also be used to share complete Node.js applications

= example modules might include
Markup, YAML etc parsers
database connectors

Express server

= npm is included with the default installers available at the Node.js
website

= test whether npm is installed, simply issue the following command
npm

= should output some helpful information if npm is currently installed

= NB: on a Unix system, such as OS X or Linux
e best to avoid installing npm modules with sudo privileges

Server-side considerations - Node.js

NPM - installing modules

= jnstall existing npm modules, use the following type of command

npm install express

= this command installs module named express in the current
directory

= it will act as a local installation within the current directory

= jnstalling in a folder called node_modules
o this is the default behaviour for current installs

= we can also specify a global install for modules
» eg.: we may wish to install the express module with global scope

npm install -g express

= again, the -g flag specifies the required global install

Server-side considerations - Node.js

NPM - importing modules

= import, or effectively add, modules in our Node.js code
e use the following declaration

var module = require('express');

= when we run this application
o Node./s looks for the required module library and its source code

Server-side considerations - Node.js

NPM - finding modules

= official online search tool for npm can be found at
° npmys

= example packages include options such as
o browserify
* express
e grunt
e bower
e karma

= also search for Node modules directly
e search from the command line using the following command

npm search express

= returns results for module names and descriptions

https://www.npmjs.com/

Server-side considerations - Node.js

CommonJS modules - custom design and usage

= extra notes available on CommondJS module usage
e custom design and usage
e [ibrary structure and development

m extra source code examples available
e general usage
e custom modules
e custom library example

Server-side considerations - Node.js

NPM - specifying dependencies

= ease Node.js app installation
e specify any required dependencies in an associated package. json file

= allows us as developers to specify modules to install for our
application
e which can then be run using the following command

npm install

= helps reduce the need to install each module individually

= helps other users install an application as quickly as possible
= our application’s dependencies are stored in one place

= example package.json

{

"name": "app",

"version": "9.0.1",

"dependencies": {
"express": "4.2.x",
"underscore": "-1.2.1"

}
}

Server-side considerations - Node.js

initial Express usage

= now use Express to start building our initial basic web application

= EXpress creates a basic shell for our web application
e cd fo working directory and use the following command

express /node/test-project

= command makes a new directory
e populates with required basic web application directories and files

= cd to this directory and install any required dependencies,

npm install

= then run our new app,

npm start

= Or run and monitor our app,

nodemon start

Server-side considerations - Node.js

initial Express server - setup

= we’ve now tested npm, and installed our first module with
Express

m test Express, and build our first, simple server
= initial directory structure

[- .
|- 424-node
| - node_modules

= need to do is create a JS file to store our server code, so we’ll add
server.js

|- .
|- 424-node
|- node_modules
|- server.js

= start adding our Node.js code to create a simple server

Server-side considerations - Node.js

initial Express server - server.js - part 1

= add some initial code to get our server up and running

/* a simple Express server for Node.js*/
var express = require("express"),

http = require("http"),

appTest;

// create our server - Listen on port 3630
appTest = express();
http.createServer(appTest).listen(3030);

// set up routes
appTest.get("/test", function(req, res) {

res.send("welcome to the 424 test app.");
1

» then start and test this server as follows at the command line

node server.js

Server-side considerations - Node.js

initial Express server - server.js - part 2

= open our web browser, and use the following URL

http://localhost:3030

= this is the route of our new server
e [o get our newly created route use the following URL

http://localhost:3030/test

= this will now return our specified route, and output message
= update our server. js file to support root directory level routes

appTest.get("/", function(req, res) {
res.send("Welcome to the 424 server.")

s
= now load our server at the root URL

http://localhost:3030

= stop server from command line using CTRL and c

Server-side considerations - Node.js

initial Express server - server.js - part 3

= currently, initial Express server is managing some static routes for
loading content
o we simply tell the server how to react when a given route Is requested

= what if we now want to serve some HTML pages?
e Express allows us to set up routes for static files

//set up static file directory - default route for server
appTest.use(express.static(__dirname + "/app"));

= now defining Express as a static file server
o enabling us to publish our HTML, CSS, and JS files
e published from our default directory, /app

= if requested file not available
o server will check other available routes
e orreport error to browser if nothing found

= DEMO - 424-node

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node

Image - Client-side and server-side computing

& localhost:3030 c

welcome to the app file directory

simple Express server output

Server-side considerations - Node.js

working with data - JSON

= |et us now work our way through a basic Node.js app
= serve our JSON, then read and load from a standard web app
= create our initial server. js file

var express = require('express'),

http = require("http"),

jsonApp = express(),

notes = {
"travelNotes": [{
"created": "2015-10-12T00:00:00Z",
"note": "Curral das Freiras..."
3]

s

jsonApp.use(express.static(__dirname + "/app"));
http.createServer(jsonApp).listen(3030);
//json route

jsonApp.get("notes.json", function(req, res) {
res.json(notes);

1)

Image - Client-side and server-side computing

(- @ localhost:3030/notes.json c Q, search

{"travelNotes":[{"created":"2015-10-12T00:00:002", "note":"Curral das Freiras..."}]}

simple Express JSON route output

Server-side considerations - Node.js

working with data - JSON

= now have our get routes setup for JSON
= now add some client-side logic to read that route
= render to the browser

= same basic patterns we’'ve seen before
e using jJQuery’s .getJISON() function

$.getIJSON("notes.json", function (response) {
console.log("response = "+response.toSource());
buildNote(response);

1}

= response object from our JSON
» this time from the server and not a file or AP/

= use our familiar functions to create and render each note
e call our normalbuildNote() function

= DEMO - 424-node-json’

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-json1

Image - Client-side and server-side computing

* localhost:3030 c

Node and JSON

Curral das Freiras...

app's copyright information, additional links...

simple Express JSON route output to DOM

Server-side considerations - Node.js

working with dala - post data

= we’ve seen examples that load JSON data
e using jQuery’s .getJISON() function

= now consider jQuery’s post function
o allow us to easily send JSON data to the server
e simply called post

= begin our updates by creating a new route in our Express server
e one that will handle the post route

jsonApp.post("/notes™, function(req, res) {
//return simple JSON object
res.json({
"message”: "post complete to server"”
1
3

Server-side considerations - Node.js

working with dala - post data

= may look similar to our earlier get routes
» difference due to browser restrictions
e can’t simply request direct route using our browser
e as we did with get routes

= need to change JS we use for the client-side
e allows us to post new route
e then enables view of the returned message

= update our test app to store data on the server
e then initialise our client with this stored data

Server-side considerations - Node.js

working with dala - post data

= start with a simple check that the post route is working correctly

e add a button, submit a request to the post route, and then wait for the
response

e add event handler for a button

$("#post").on("click", function() {
$.post("notes", {}, function (response) {
console.log("server post response returned..."” + response.toSource());

1))
1)

= submit a post request
e specify the route for the post to the Node.js server
e then specify the data to post - an empty object in this example
o the specify a callback for the server’s response

= test returns the following output to the browser’s console,

server post response returned...({message:"post complete to server"})

Server-side considerations - Node.js

working with dala - post data

= now send some data to the server
e add new nofte to our object

= update the server to handle this incoming object

o process the submitted jQuery JSON into a JavaScript object
e ready for use with the server

= use the Express module’s body-parser plugin
= update server. js as follows

//add body-parser for JSON parsing etc...
var bodyParser = require("body-parser");

//Express will parse incoming JSON objects
jsonApp.use(bodyParser.urlencoded({ extended: false }));

= as server receives new JSON object
e jt will now parse, or process, this object
e ensures it can be stored on the server for future use

Server-side considerations - Node.js

working with dala - post data

= now update our test button’s event handler
e send a new note as a JSON object

= note will retrieve its new content from the input field
e gefs the current time from the node server

$(".note-input button").on("click", function() {
//get values for new note
var note_text = $(".note-input input").val();
var created = new Date();
//create new note
var newNote = {"created":created, "note":note_text};
//post new note to server
$.post("notes", newNote, function (response) {
console.log("server post response returned..."” + response.toSource());

1
1)

= input field and button follow the same pattern as previous
examples

<!-- note 1input -->

<section class="note-input col-6">
<h5>add note</h5>
<input><button>add</button>

</section>

= DEMO - 424-node-json2

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-json2

Image - Client-side and server-side computing

€ | & locahost:3030 c
Node and JSON
add note

hew note for the server | add
Curral das Freiras...

app's copyright information, additional links...

Node.js and Express - post new note to server

' localhost:3030 c
Node and JSON
add note

add
Curral das Freiras...
new note for the server

app's copyright information, additional links...

Node.js and Express - get new notes from server

Node.js extras - APl examples

= various custom APl examples
o JoDos & ToDos with testing

authentication examples

Notelaking

..with Socket.io

= Twitter with Node.js custom server
» user queries &c.
o QAuth based login and authentication

= Yelp with Node.js custom server
e custom server and remote APl query
o sample handling of local API for queries

JavaScript - modular design

ES Module pattern - intro

= simpler and easier to work with than CommonJS
e /n most examples...

» JavaScript strict mode is enabled by default

= strict mode helps with language usage - check for poor usage
stops hoisting of variables

variables must be declared

function parameters must have unique name

assignment to read-only properties throws errors

= modules are exported with export statements
= modules are imported with import statements

JavaScript - modular design

ES Module pattern - export statements

= ES6 modules are individual files
o expose an APl using export statements

= declarations are scoped to the local module

= e.g. variables declared inside a module
e not available to other modules
e need to be explicitly exported in module AP/
e need to be imported for usage in another module

= export statements may only be added to fop-/eve/of a module
e e.g. not in function expression &c.

= cannot dynamically define and expose API using methods
e unlike CommonJS module system - Node.js &c.

JavaScript - modular design

ES Module pattern - export default

= common option is to export a default binding, e.g.

export default "hello world”

export default {
name: 'Alice’,
place: 'Wonderland'’

export default [
'Alice’', 'Wonderland'

]

export default function name() {

}

JavaScript - modular design

ES Module pattern - bindings

= ES modules export bindings
e not values or references

= e.g. an export of count variable from a module
e count /s exported as a binding
e export is bound to count variable in the module
* value is subject fo changes of count in module

m offers flexibility to exported API
e e.g. count might originally be bound to an object
e then changed to an array...

= other modules consuming this export
o they would see change as count is modified
e modified in module and exported...

= n.b. take care with this usage pattern
e useful for counters, logs &c.
e can cause Issues with AP/l usage for a module

JavaScript - modular design

ES Module pattern - named export

= we may define bindings for export

= instead of assigning properties to implicit export object
e eg.

0
() => counter++

export let counter

export const count

= cannot refactor this example for named export
e syntax error will be thrown

e eg.

0
() => counter++

let counter
const count

export counter // this will return syntax error
export count

= rigid syntax helps with analysis, parsing
e slatic analysis for ES modules

JavaScript - modular design

ES Module pattern - export lists

= lists provide a useful solution to previous refactor issue
= syntax for list export easy to parse

= export lists of named fop-/eve/declarations
» variables &c.

= eqg.

let counter = 0
const count = () => counter++
export { counter, count }

= also rename binding for export, e.g.

let counter = 0
const count = () => counter++
export { counter, count as increment }

= define default with export list, e.g.

0
const count = () => counter++

let counter

export { counter as default, count as increment }

JavaScript - modular design

ES Module pattern - export from ...

= expose another module’s API using export from...
e j.e. akind of pass through..

= eqg.

export { increment } from './myCounter.js’

= bindings are not imported into module’s local scope

= current module acts as conduit, passing bindings along
export/import chain...

= module does not gain direct access to export from ... bindings
e e.g. Ifwe call increment it will throw a ReferenceError

= aliases are also possible for bindings with export from...
e &g.

export { increment as addition } from './myCounter.js’

JavaScript - modular design

ES Module pattern - import statements

= use import to load another module

= import statement are only allowed in top level of module
definition
e same as export statements
o helps compilers simplify module loading &c.

= import default exports
» give default export a name as it is imported

e eg.
import counter from './myCounter.js'

= importing binding to counter
= syntax different from declaring a JS variable

JavaScript - modular design

ES Module pattern - import named exports

= also imported any named exports
e /mport more than just default exports

= named import is wrapped in braces
e og.

import { increment } from './myCounter.js’

= also import multiple named exports
e 2g.

import { increment, decrement } from './myCounter.js’

= import aliases are also supported
e e.g.

import { increment as addition } from './myCounter.js’

= combine default with named
e eg.

import counter, { increment } from './myCounter.js'

JavaScript - modular design

ES Module pattern - import with wildcard

= we may also import using the wildcard operator
e e.g.

import * as counter from './myCounter.js’
counter.increment()

= name for wildcard import acts like object for module
= call module exports on wildcard

import * as counter from './myCounter.js'’
counter.increment()

= common pattern for working with libraries &c.

JavaScript - modular design

ES Module pattern - benefits & practical usage

m offers ability to explicitly publish an API
e keeps module content local unless explicitly exported

= similar function to gefters and setters
o explicit way in and out of modules
e explicit options for reading and updating values..

= code becomes simpler to write and manage
e module offers encapsulation of code

= import binding to variable, function &c.
» then use it as normal..

= removes need for encapsulation in main JS code
e e.g. with patterns such as lIFE...

= 1.b. need to be careful how we use modules
e e.g. priority for access, security, testing &c.
e all now moved to individual modules...

JavaScript - modular design

ES Module pattern - Lib structure

= Modules in JavaScript are not a new concept

e e.g. CommonJS is a popular option for modular development with
Node.js

= 3 built-in option for plain JavaScript, £S Modules.
= use this option to develop and structure custom module libraries

= e.g.

abstract utility modules
custom draw libraries
game renderers

JavaScript - modular design

ES Module pattern - JS library

= an example JS library - define the following directory structure

|-- 1ib

| |-- spire

| | | -- helpers
Il | | |_ log.Js
| | |_ spire.js
|__ main.js

|

= 1lib directory contains custom JS libraries, which may then be
imported for use within an app

= for app usage, we might structure it as follows

|-- 1ib

| |-- spire

| | | -- helpers
Il | | |_ log.Js
| | |__ spire.js
| _ index.html

I

I

main.js

JavaScript - modular design

ES Module pattern - JS library - main. js

= main.js file is loaded from the index.html file
e gcts as the loader file for JS in an example app

= also import example Spire JS library into an app using this main
loader file, e.g.

import Spire from './lib/spire/spire.js’;

m Spire object is the access point to the exported methods and
variables for custom JS library

JavaScript - modular design

ES Module pattern - JS library - basic usage

= a custom JS library may then be accessed using this Spire object
= e.g. we might call a method from the library

const greeting = 'greetings from the planet Earth’;
// basic log to console
Spire.log(" ${greeting}...we wish you well’);

= custom method log() provides a reusable method
e e.g. use for various logging options in the application

= might also call the following method using the same pattern

Spire.dir({'name': 'test dir logger...'});

JavaScript - modular design

ES Module pattern - JS library - module usage

= sample usage might include such helpers
e we may package in the directory spire/helpers/
e e.g., we currently have a Log. js module for various custom loggers

// basic logger to console
function log(value, ...values) {
const logValue = console.log(value, ...values);

return logValue;

}

// directory logger to console
function dir(value, ...values) {
const dirValue = console.dir(value, ...values);

return dirvValue;

}

= we may then simply export these methods from the log. js
module, e.g.

export {
log,
dir
}

= interface for this module has now been defined relative to the
above exported modules

JavaScript - modular design

ES Module pattern - JS library - import modules

= import this module
e allow a module to use these exported methods
e /nteract with the exposed interface

= as part of the JS library structure we may define
e g root module for organising a unified interface for the overall library

= e.g. use the module spire.js to import required modules and
their interfaces

import * as loggers from './helpers/log.js"';

= then define a Spire object for the overall library, e.g.

const Spire = {
log: loggers.log,
dir: loggers.dir,

= this is then exported as the general interface for the Spire JS
library, e.g.

export default Spire;

Responsive Design & Development - Modular Designs

Fun Exercise

Three responsive designs,

= Modular designs -
http://linode4.cs.luc.edu/teaching/cs/demos/424/gifs/modular/
o Home Design
 Reminders
o |Watches

For each design, consider the following

= define perceived modules for each app
o where might you use a module?

= what type of modules can you define in each app?
e e.g. logical, structural, design, performance...

= from a developer perspective
e consider primary moadular groupings
e does each module purpose help with testing?

e can each module be decoupled from app?
o e.g. test and use outside of current app...

~ 10 minutes

Server-side considerations - data storage

intro

» tested Node.js, created a server for hosting our files and routes
with ExpressJS

e read JSON from the server
e updated our JSSON on the server-side

= works well as long as we do not need to restart, repair, update etc
our server

= data lost with restart etc...

= need to consider a persistent data storage
* /ndependent from the application

= NoSQL options such as Redis and MongoDB
= integration with Node.js

Server-side considerations - data storage

SQL or NoSQL

= common database usage and storage
e often thought solely in terms of SQL, or structured query language

= SQL used to query data in a relational format

= relational databases, for example MySQL or PostgreSQL, store
their data in tables
e provides a semblance of structure through rows and cells
e easily cross-reference, or relate, rows across tables

= 3 relational structure to map authors to books, players to teams...
o thereby dramatically reducing redundancy, required storage space...

= improvement in storage capacities, access...
o Jed to shift in thinking, and database design in general

m started to see introduction of non-relational databases
» often referred to simply as NoSQL

= with NoSQL DBs
e redundant data may be stored
e such designs often provide increased ease of use for developers

= some NoSQL examples for specific use cases
e eg. fast reading of data more efficient than writing
e specialised DB designs

Server-side considerations - data storage

Redlis - intro

= Redis provides an excellent example of NoSQL based data
storage

= designed for fast access to frequently requested data

= improvement in performance often due to a reduction in perceived
reliability
e due to in-memory storage instead of writing to a disk

= able to flush data to disk
e performs this task at given points during uptime
e for majority of cases considered an in-memory data store

= stores this data in a key-value format
e Similar in nature to standard object properties in JavaScript

= Redis often a natural extension of conventional data structures

= Redis is a good option for quick access to data
e optionally caching temporary data for frequent access

Server-side considerations - data storage

Redis - installation

= On OS X, use the Homebrew package manager to install Redis

brew install redis

= Windows port maintained by the Microsoft Open Tech Group -
Redis
o oruse Windows package manager - https.//chocolatey.org/
o Iry WSL
* n.b. Redis on Windows is not recommended...

= for Linux - download, extract, and compile Redis

$ wget http://download.redis.io/releases/redis-3.0.5.tar.gz
$ tar xzf redis-3.0.5.tar.gz

$ cd redis-3.0.5

$ make

https://github.com/MSOpenTech/redis
https://chocolatey.org/

Server-side considerations - data storage

Redis - server and CL/

= start the Redis server with the following command,

redis-server
= interact with our new server directly using the CLI tool,
redis-cli

= store some data in Redis using the set command
e create a new key fornotes, and then set its value to 6
o /fvalue is set Redis returns OK

set notes ©

= retrieve a value using the get command
e returns our set value ofée

get notes

Image - Client-side and server-side computing

Drs-MacBook-Air-2:~ ancientlives$ redis-cli
127.8.8.1:6379> set notes B

0K

127.8.8.1:6379= get notes

ngn

127.0.8.1:6379= [I

Redis CLI - set and get

Server-side considerations - data storage

Redis - server and CL/

= also manipulate existing values for a given key
e eg. increment and decrement a value, or simply delete a key

= increment key notes value by 1

incr notes

= decrement key notes value by 1

decr notes

= we can then increment or decrement by a specified amount

// increment by 10
incrby notes 10

// decrement by 5
decrby notes 5

= delete our key

// single key deletion
del notes

// multiple keys deletion
del notes notes2 notes3

Image - Client-side and server-side computing

Drs-MacBook-Air-2:~ ancientlives$ redis-cli
127.0.08.1:6379> set notes @

0K

127.0.@8.1:6379> get notes

ng

127.8.8.1:6379> incr notes
{integer) 1

127.8.8.1:6379= incr notes
{integer) 2

127.8.8.1:6379= get notes

nan

127.8.8.1:6379= decr notes
{integer) 1

127.8.8.1:6379= get notes

wyn

127.8.8.1:6379= incrby notes 18
{integer) 11

127.8.8.1:6379= get notes

wype

127.8.8.1:6379= decrby notes 5
{integer) &

127.8.8.1:6379= get notes

ngh

Redis CLI - increment and decrement

Server-side considerations - data storage

Redis and Node.js setup

= test Redis with our Node.js app
= new test app called 424-node-redisl

|- 424-node-redisil
|- app
|- assets
| - node_modules
| - package.json
|- server.js

= create new file, package. json to track project
e eg. dependencies, name, description, version..

Server-side considerations - data storage

Redis and Node.js - package.json

{

"name": "424-node-redisl”,
"version": "1.0.0",
"description”: "test app for node and redis"”,
"main": "server.js",
"dependencies”: {
"body-parser"”: "~1.14.1",
"express": "~4,13.3",
"redis": "~2.3.0"

}s

"author": "ancientlives",
"license": "ISC"

}

= we can write the package. json file ourselves or use the
interactive option

npm init
= then add extra dependencies, eg: Redis, using

npm install redis --save

= use package. json to help with app management and
abstraction...

Server-side considerations - data storage

Redis and Node.js - set notes value

= add Redis to our earlier test app
= import and use Redis in the server. js file

var express = require("express"),
http = require("http"),
bodyParser = require("body-parser"),
jsonApp = express(),
redis = require("redis");

= create client to connect to Redis from Node.js

//create client to connect to Redis
redisConnect = redis.createClient();

= then use Redis, for example, to store access total for notes on
server

redisConnect.incr("notes");

= check Redis command line for change in notes value

get notes

Server-side considerations - data storage

Redis and Node.js - get notes value

= now set the counter value for our notes
e add our counter to the application to record access count for notes

= use the get command with Redis to retrieve the incremented
values for the notes key

redisConnect.get("notes"”, function(error, notesCounter) {
//set counter to int of value in Redis or start at 0
notesTotal.notes = parseInt(notesCounter,10) || 0;

1)

m get accepts two parameters - error and return value

= Redis stores values and strings
e convert string to integer using parseInt()

» [wo parameters - return value and base-160 value of the specified
number

= value is now being stored in a global variable notesTotal
e declared inserver.js

var express = require("express"),
http = require("http"),
bodyParser = require("body-parser"),
jsonApp = express(),
redis = require("redis"),
notesTotal = {};

Server-side considerations - data storage

Redis and Node.js - get notes value

= store notes counter value in Redis

= create new route in server.js
e monitor the returned JSON for the counter

//json get route
jsonApp.get("/notesTotal.json”, function(req, res) {
res.json(notesTotal);

1)

= gstart using it with our application
e Joad by default, within event handler...

= render to DOM
= store as a internal log record

= |ink to create note event handler...
» DEMO - 424-node-redis1

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-redis1

Image - Client-side and server-side computing

€ localhost:3030 c

Node and Redis
add note

Funchal... add
notes counter = 36

Curral das Freiras...
Monte...
Funchal...

app's copyright information, additional links...

Node and Redis - 424-node-redis

Server-side considerations - data storage

MongoDB - intro

= MongoDB is another example of a NoSQL based data store
o g database that enables us to store our data on disk

= unlike MySQL, for example, it is not in a relational format

= MongoDB is best characterised as a document-oriented
database

= conceptually may be considered as storing objects in collections

= stores its data using the BSON format
o consider similar to JSON
e use JavaScript for working with MongoDB

Server-side considerations - data storage

MongoDB - document oriented

= SQL database, data is stored in tables and rows
= MongoDB, by contrast, uses collections and documents

= comparison often made between a collection and a table
» NB:a document is quite different from a table
e g document can contain a lot more data than a table

= a noted concern with this document approach is duplication of
data

= one of the trade-offs between NoSQL (MongoDB) and SQL

= SQL - goal of data structuring is to normalise as much as possible
» thereby avoiding duplicated information

= NoSQL (MongoDB) - provision a data store, as easy as possible
for the application to use

Server-side considerations - data storage

MongoDB - BSON

= BSON is the format used by MongoDB to store its data

= effectively, JSON stored as binary with a few notable differences

e eg.0Objectld values - data type used in MongoDB to uniquely identify
documents

e created automatically on each document in the database
e often considered as analogous to a primary key in a SQL database

= ObjectId is alarge pseudo-random number
= for nearly all practical occurrences, assume number will be unique

= might cease to be unique if server can’t keep pace with number
generation...

= other interesting aspect of ObjectId
o they are partially based on a timestamp
e helps us determine when they were created

Server-side considerations - data storage

MongoDB - general hierarchy of data

= in general, MongoDB has a three tiered data hierarchy

1. database * nhormally one database per app * possible to have multiple
per server * same basic role as DB in SQL

2. collection * a grouping of similar pieces of data * documents in a
collection * name is usually a noun * resembles in concept a table in SQL
* documents do not require the same schema

3. document * a single item in the database * data structure of field and
value pairs * similar to objects in JSON * eg: an individual user record

Server-side considerations - data storage

MongoDB - install and setup

= install on Linux

= install on Mac OS X
e again, we can use Homebrew to install MongoDB

// update brew packages
brew update

// install MongoDB

brew install mongodb

= then follow the above OS X install instructions to set paths...
= install on Windows

https://docs.mongodb.org/manual/administration/install-on-linux/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

Server-side considerations - data storage

MongoDB - a few shell commands

= jssue following commands at command line to get started - OS X
etc

// start MongoDB server - terminal window 1
mongod

// connect to MongoDB - terminal window 2
mongo

= switch to, create a new DB (if not available), and drop a current
DB as follows

// list available databases
show dbs

// switch to specified db
use 424dbl

// show current database
db

// drop current database
db.dropDatabase();

= DB is not created permanently until data is created and saved
e /nsert a record and save to current DB

= only permanent DB is the local test DB, until new DBs created...

Server-side considerations - data storage

MongoDB - a few shell commands

= add an initial record to a new 424db1 database.

// select/create db
use 424dbl
// insert data to collection in current db
db.notes.insert({
"travelNotes": [{
"created": "2015-10-12T00:00:00Z",
"note": "Curral das Freiras..."
.o 1
D)

= our new DB 424db1 will now be saved in Mongo
= we’'ve created a new collection, notes

// show databases

show dbs

// show collections
show collections

Server-side considerations - data storage

MongoDB - test app

= NOW create a new test app for use with MongoDB

= create and setup app as before
e eg. same selup pattern as Redis test app

= add Mongoose to our app
e use to connect to MongoDB
e helps us create a schema for working with DB

= update our package.json file
e add dependency for Mongoose

// add mongoose to app and save dependency to package.json
npm install mongoose --save

= test server and app as usual from app’s working directory

node server.js

Server-side considerations - data storage

MongoDB - Mongoose schema

= use Mongoose as a type of bridge between Node.js and
MongoDB

= works as a client for MongoDB from Node.js applications

= serves as a useful data modeling tool
e represent our documents as objects in the application

= a data model
» object representation of a document collection within data store
o helps specify required fields for each collection’s document
e known as a schema in Mongoose, eg: NoteSchema

var NoteSchema = mongoose.Schema({
"created": Date,
"note": String

1)

= using schema, build a model
e by convention, use first letter uppercase for name of data model object

var Note = mongoose.model("Note", NoteSchema);

= now start creating objects of this model type using JavaScript

var funchalNote = new Note({
"created": "2015-10-12T00:00:00Z",
"note": "Curral das Freiras..."

1)

= then use the Mongoose object to interact with the MongoDB
* using functions such as save and find

Server-side considerations - data storage

MongoDB - test app

= with our new DB setup, our schema created

now start to add notes to our DB, 424db1, in MongoDB

= inour server.js file

need to connect Mongoose to 424db1 in MongoDB
define our schema for our notes

then model a note

use model to create a note for saving to 424db1

//connect to 424dbl DB in MongoDB
mongoose.connect('mongodb://localhost/424dbl");
//define Mongoose schema for notes
var NoteSchema = mongoose.Schema({

"created": Date,

"note": String

1)

//model note
var Note = mongoose.model("Note", NoteSchema);

Server-side considerations - data storage

MongoDB - test app

= then update app’s post route to save note to 424db1

//json post route - update for MongoDB
jsonApp.post("/notes™, function(req, res) {
var newNote = new Note({
"created":req.body.created,
"note":req.body.note

})s
newNote.save(function (error, result) {
if (error !== null) {

console.log(error);
res.send("error reported");
} else {
Note.find({}, function (error, result) {
res.json(result);
})
}
1
3

Server-side considerations - data storage

MongoDB - test app

= update our app’s get route for serving these notes

//json get route - update for mongo
jsonApp.get("/notes.json", function(req, res) {
Note.find({}, function (error, notes) {
//add some error checking...
res.json(notes);

1)
1)

= modify buildNotes () function in json_app.js to get return
correctly

//get travelNotes
var $travelNotes = response;

= now able to enter, save, read notes for app

= notes data is stored in the 424db1 database in MongoDB
= notes are loaded from DB on page load

= notes are updated from DB for each new note addition

= DEMO - 424-node-mongof

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-mongo1

Image - Client-side and server-side computing

* localhost:3030 c

Node and Mongo

add note

add a new note... add

Funchal note...

Monte note...

another note from Curral das Freiras...
on a trip to Porto Moniz...

app's copyright information, additional links...

Node and MongoDB - 424-node-mongo1

Client-side - Data - Node, Express, MongoDB &c.

extra notes

= Heroku
o Heroku & Git
o Heroku & MongoDB
o Heroku & Postman

= Node.js
o Node.js outline
o Node.js updating

= Node.js & Express
o Node.js and Express
» Node./s & Express starter

= Node.js, Express, and MongoDB
» Node./s and MongoDB

= Node.js API

o Dala stores & APIs - MongoDB and native driver
o Node Todos AP/
e Jesting - Node Todos AP/

= Node.js & Web Sockets
 Node.js & Socket.io

https://csteach424.github.io/assets/docs/extras/2019/various/git-heroku-setup.pdf
https://csteach424.github.io/assets/docs/extras/2019/various/heroku-mongodb-setup.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/heroku-mongo-postman.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/nodejs-outline.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/update-nodejs.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/nodejs-express-outline.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/node-express-starter.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/nodejs-mongo-outline.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/mongodb-native-driver-api.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/node-todos-api.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/testing-todos-api.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/web-sockets/notes-nodejs-socketio.pdf

Resources

= Chocolatey for Windows
o Chocolatey package manager for Windows

= Homebrew for OS X
o Homebrew - the missing package manager for OS X

= MongoDB
» MongoDB - For Giant ldeas
o MongoDB - Getting Started (Node.js driver edition)
» MongoDB - Getting Started (shell edition)

= Mongoose
e MongooseJS Docs

= Node.js

Node.js home

Node./s - download
ExpressJS

ExpressJS body-parser

= Redis
e redis.io
e redis commands
e redis - npm
o [ry redis
o Windows support

https://chocolatey.org/
http://brew.sh/
https://www.mongodb.org/
https://docs.mongodb.org/getting-started/node/
https://docs.mongodb.org/getting-started/shell/
http://mongoosejs.com/index.html
https://nodejs.org/en/
https://nodejs.org/en/download/
http://expressjs.com/
https://github.com/expressjs/body-parser
http://redis.io/
http://redis.io/commands
https://www.npmjs.com/package/redis
http://try.redis.io/
https://github.com/MSOpenTech/redis

