
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 12

Dr Nick Hayward



JS Server-side considerations - save data

save JSON in travel notes app

need to be able to save our simple notes

now load from a JSON file as the app starts
also we can add new notes, delete existing notes…

not as simple as writing to our existing JSON file direct from JS
security implications if that was permitted directly from the browser

need to consider a few server-side options

could use a combination of PHP on the server-side
with AJAX jQuery on the client-side

traditional option with a simple ajax post to a PHP file on the server-side

consider JavaScript options on the client and server-side

brief overview of working with Node.js



Server-side considerations - intro

normally define computer programs as either client-side or server-
side programs

server-side programs normally abstract a resource over a network
enabling many client-side programs to access at the same time

a common example is file requests and transfers

we can think of the client as the web browser

a web server as the remote machine abstracting resources

abstracts them via hypertext transfer protocol

HTTP for short

designed to help with the transfer of HTML documents
HTTP now used as an abstracted wrapper for many different types of
resources

may include documents, media, databases…



Image - Client-side and server-side computing

client-side & server-side



Server-side considerations - Node.js

intro - what is Node.js?

Node.js is, in essence, a JavaScript runtime environment
designed to be run outside of the browser

designed as a general purpose utility

can be used for many different tasks including
asset compilation

monitoring

scripting

web servers

with Node.js, role of JS is changing
moving from client-side to a support role in back-end development



Server-side considerations - Node.js

intro - speed of Node.js

a key advantage touted for Node.js is its speed

many companies have noted the performance benefits of
implementing Node.js
including PayPal, Walmart, LinkedIn…

a primary reason for this speed boost is the underlying
architecture of Node.js

Node.js uses an event-based architecture

instead of a threading model popular in compiled languages

Node.js uses a single event thread by default

all I/O is asynchronous



Server-side considerations - Node.js

intro - conceptual model for processing in Node.js

how does Node.js, and its underlying processing model, actually
work?

client sends a hypertext transfer protocol, HTTP, request
request or requests sent to Node.js server

event loop is then informed by the host OS
passes applicable request and response objects as JavaScript closures

passed to associated worker functions with callbacks

long running jobs continue to run on various assigned worker
threads

responses are sent from the non-blocking workers back to the
main event loop
returned via a callback

event loop returns any results back to the client
effectively when they’re ready



Image - Client-side and server-side computing

Node.js - conceptual model for processing



Server-side considerations - Node.js

intro - threaded architecture

concurrency allows multiple things to happen at the same time

common practice on servers due to the nature of multiple user
queries

Java, for example, will create a new thread on each connection
threading is inherently resource expensive

size of a thread is normally around 4MB of memory

naturally limits the number of threads that can run at the same
time

also inherently more complicated to develop platforms that are
thread-safe
thereby allowing for such functionality

due to this complexity
many languages, eg: Ruby, Python, and PHP, do not have threads that
allow for real concurrency

without custom binaries

JavaScript is similarly single-threaded
able to run multiple code paths in parallel due to events



Server-side considerations - Node.js

intro - event-driven architecture

JavaScript originally designed to work within the confines of the
web browser

had to handle restrictive nature of a single thread and single
process for the whole page

synchronous blocking in code would lock up a web page from all
actions
JavaScript was built with this in mind

due to this style of I/O handling
Node.js is able to handle millions of concurrent requests on a single
process

added, using libraries, to many other existing languages
Akka for Java

EventMachine for Ruby

Twisted for Python

…

JavaScript syntax already assumes events through its use of
callbacks

NB: if a query etc is CPU intensive instead of I/O intensive
thread will be tied up

everything will be blocked as it waits for it to finish



Server-side considerations - Node.js

intro - callbacks

in most languages
send an I/O query & wait until result is returned

wait before you can continue your code procedure

for example, submit a query to a database for a user ID
server will pause that thread/process until database returns result for ID
query

in JS, this concept is rarely implemented as standard

in JS, more common to pass the I/O call a callback

in JS, this callback will need to run when task is completed
eg: find a user ID and then do something, such as output to a HTML
element

biggest difference in these approaches
whilst the database is fetching the user ID query

thread is free to do whatever else might be useful

eg: accept another web request, listen to a different event…

this is one of the reasons that Node.js returns good benchmarks
and is easily scaled

NB: makes Node.js well suited for I/O heavy and intensive
scenarios



Server-side considerations - Node.js

install Node.js

a number of different ways to install Node.js, npm, and the
lightweight, customisable web framework Express

run and test Node.js on a local Mac OS X or Windows machine

download and install a package from the following URL
Node.js - download

install the Node module, Express

Express is a framework for web applications built upon Node.js
minimal, flexible, & easily customised server

use npm to install the Express module

-g option sets a global flag for Express instead of limited local
install

installs Express command line tool
allows us to start building our basic web application

now also necessary to install Express application generator

npm install -g express

npm install -g express-generator

https://nodejs.org/en/download/


Server-side considerations - Node.js

NPM - intro

npm is a package manager for Node.js

Developers can use npm to share and reuse modules in Node.js
applications

npm can also be used to share complete Node.js applications

example modules might include
Markup, YAML etc parsers

database connectors

Express server

…

npm is included with the default installers available at the Node.js
website

test whether npm is installed, simply issue the following command

should output some helpful information if npm is currently installed

NB: on a Unix system, such as OS X or Linux
best to avoid installing npm modules with sudo privileges

npm



Server-side considerations - Node.js

NPM - installing modules

install existing npm modules, use the following type of command

this command installs module named express in the current
directory

it will act as a local installation within the current directory

installing in a folder called node_modules
this is the default behaviour for current installs

we can also specify a global install for modules
eg: we may wish to install the express module with global scope

again, the -g flag specifies the required global install

npm install express

npm install -g express



Server-side considerations - Node.js

NPM - importing modules

import, or effectively add, modules in our Node.js code
use the following declaration

when we run this application
Node.js looks for the required module library and its source code

var module = require('express');



Server-side considerations - Node.js

NPM - finding modules

official online search tool for npm can be found at
npmjs

example packages include options such as
browserify

express

grunt

bower

karma

…

also search for Node modules directly
search from the command line using the following command

returns results for module names and descriptions

npm search express

https://www.npmjs.com/


Server-side considerations - Node.js

CommonJS modules - custom design and usage

extra notes available on CommonJS module usage
custom design and usage

library structure and development

extra source code examples available
general usage

custom modules

custom library example



Server-side considerations - Node.js

NPM - specifying dependencies

ease Node.js app installation
specify any required dependencies in an associated package.json file

allows us as developers to specify modules to install for our
application
which can then be run using the following command

helps reduce the need to install each module individually

helps other users install an application as quickly as possible

our application’s dependencies are stored in one place

example package.json

npm install

{
"name": "app",
"version": "0.0.1",
"dependencies": {
  "express": "4.2.x",
  "underscore": "-1.2.1"
}
}



Server-side considerations - Node.js

initial Express usage

now use Express to start building our initial basic web application

Express creates a basic shell for our web application
cd to working directory and use the following command

command makes a new directory
populates with required basic web application directories and files

cd to this directory and install any required dependencies,

then run our new app,

or run and monitor our app,

express /node/test-project

npm install

npm start

nodemon start



Server-side considerations - Node.js

initial Express server - setup

we’ve now tested npm, and installed our first module with
Express

test Express, and build our first, simple server

initial directory structure

need to do is create a JS file to store our server code, so we’ll add
server.js

start adding our Node.js code to create a simple server

|- .
   |- 424-node
      |- node_modules

|- .
   |- 424-node
      |- node_modules
      |- server.js



Server-side considerations - Node.js

initial Express server - server.js - part 1

add some initial code to get our server up and running

then start and test this server as follows at the command line

/* a simple Express server for Node.js*/
var express = require("express"),
    http = require("http"),
    appTest;

// create our server - listen on port 3030
appTest = express();
http.createServer(appTest).listen(3030);

// set up routes
appTest.get("/test", function(req, res) {
  res.send("welcome to the 424 test app.");
});

node server.js



Server-side considerations - Node.js

initial Express server - server.js - part 2

open our web browser, and use the following URL

this is the route of our new server
to get our newly created route use the following URL

this will now return our specified route, and output message

update our server.js file to support root directory level routes

now load our server at the root URL

stop server from command line using CTRL and c

http://localhost:3030

http://localhost:3030/test

appTest.get("/", function(req, res) {
  res.send("Welcome to the 424 server.")
});

http://localhost:3030



Server-side considerations - Node.js

initial Express server - server.js - part 3

currently, initial Express server is managing some static routes for
loading content
we simply tell the server how to react when a given route is requested

what if we now want to serve some HTML pages?
Express allows us to set up routes for static files

now defining Express as a static file server
enabling us to publish our HTML, CSS, and JS files

published from our default directory, /app

if requested file not available
server will check other available routes

or report error to browser if nothing found

DEMO - 424-node

//set up static file directory - default route for server
appTest.use(express.static(__dirname + "/app"));

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node


Image - Client-side and server-side computing

simple Express server output



Server-side considerations - Node.js

working with data - JSON

let us now work our way through a basic Node.js app

serve our JSON, then read and load from a standard web app

create our initial server.js file

var express = require('express'),
    http = require("http"),
    jsonApp = express(),
    notes = {
      "travelNotes": [{
      "created": "2015-10-12T00:00:00Z",
      "note": "Curral das Freiras..."
      }]
    };

jsonApp.use(express.static(__dirname + "/app"));

http.createServer(jsonApp).listen(3030);

//json route
jsonApp.get("notes.json", function(req, res) {
  res.json(notes);
});



Image - Client-side and server-side computing

simple Express JSON route output



Server-side considerations - Node.js

working with data - JSON

now have our get routes setup for JSON

now add some client-side logic to read that route

render to the browser

same basic patterns we’ve seen before
using jQuery’s .getJSON() function

response object from our JSON
this time from the server and not a file or API

use our familiar functions to create and render each note
call our normal buildNote() function

DEMO - 424-node-json1

...
  $.getJSON("notes.json", function (response) {
    console.log("response = "+response.toSource());
    buildNote(response);
  })
...

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-json1


Image - Client-side and server-side computing

simple Express JSON route output to DOM



Server-side considerations - Node.js

working with data - post data

we’ve seen examples that load JSON data
using jQuery’s .getJSON() function

now consider jQuery’s post function
allow us to easily send JSON data to the server

simply called post

begin our updates by creating a new route in our Express server
one that will handle the post route

jsonApp.post("/notes", function(req, res) {
  //return simple JSON object
  res.json({
    "message": "post complete to server"
  });
});



Server-side considerations - Node.js

working with data - post data

may look similar to our earlier get routes
difference due to browser restrictions

can’t simply request direct route using our browser

as we did with get routes

need to change JS we use for the client-side
allows us to post new route

then enables view of the returned message

update our test app to store data on the server
then initialise our client with this stored data



Server-side considerations - Node.js

working with data - post data

start with a simple check that the post route is working correctly
add a button, submit a request to the post route, and then wait for the
response

add event handler for a button

submit a post request
specify the route for the post to the Node.js server

then specify the data to post - an empty object in this example

the specify a callback for the server’s response

test returns the following output to the browser’s console,

$("#post").on("click", function() {
  $.post("notes", {}, function (response) {
    console.log("server post response returned..." + response.toSource());
  })
});

server post response returned...({message:"post complete to server"})



Server-side considerations - Node.js

working with data - post data

now send some data to the server
add new note to our object

update the server to handle this incoming object
process the submitted jQuery JSON into a JavaScript object

ready for use with the server

use the Express module’s body-parser plugin

update server.js as follows

as server receives new JSON object
it will now parse, or process, this object

ensures it can be stored on the server for future use

//add body-parser for JSON parsing etc...
var bodyParser = require("body-parser");
...
//Express will parse incoming JSON objects
jsonApp.use(bodyParser.urlencoded({ extended: false }));
...



Server-side considerations - Node.js

working with data - post data

now update our test button’s event handler
send a new note as a JSON object

note will retrieve its new content from the input field
gets the current time from the node server

input field and button follow the same pattern as previous
examples

DEMO - 424-node-json2

$(".note-input button").on("click", function() {
  //get values for new note
  var note_text = $(".note-input input").val();
  var created = new Date();
  //create new note
  var newNote = {"created":created, "note":note_text};
  //post new note to server
  $.post("notes", newNote, function (response) {
    console.log("server post response returned..." + response.toSource());
  })
});

<!-- note input -->
<section class="note-input col-6">
    <h5>add note</h5>
    <input><button>add</button>
</section>

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-json2


Image - Client-side and server-side computing

Node.js and Express - post new note to server

Node.js and Express - get new notes from server



Node.js extras - API examples

various custom API examples
ToDos & ToDos with testing

authentication examples

Notetaking

…with Socket.io

…

Twitter with Node.js custom server
user queries &c.

OAuth based login and authentication

Yelp with Node.js custom server
custom server and remote API query

sample handling of local API for queries



JavaScript - modular design

ES Module pattern - intro

simpler and easier to work with than CommonJS
in most examples…

JavaScript strict mode is enabled by default

strict mode helps with language usage - check for poor usage
stops hoisting of variables

variables must be declared

function parameters must have unique name

assignment to read-only properties throws errors

…

modules are exported with export statements

modules are imported with import statements



JavaScript - modular design

ES Module pattern - export statements

ES6 modules are individual files
expose an API using export statements

declarations are scoped to the local module

e.g. variables declared inside a module
not available to other modules

need to be explicitly exported in module API

need to be imported for usage in another module

export statements may only be added to top-level of a module
e.g. not in function expression &c.

cannot dynamically define and expose API using methods
unlike CommonJS module system - Node.js &c.



JavaScript - modular design

ES Module pattern - export default

common option is to export a default binding, e.g.

export default `hello world`

export default {
    name: 'Alice',
    place: 'Wonderland'
}

export default [
    'Alice', 'Wonderland'
]

export default function name() {
    ...
}



JavaScript - modular design

ES Module pattern - bindings

ES modules export bindings

not values or references

e.g. an export of count variable from a module
count is exported as a binding

export is bound to count variable in the module

value is subject to changes of count in module

offers flexibility to exported API
e.g. count might originally be bound to an object

then changed to an array…

other modules consuming this export
they would see change as count is modified

modified in module and exported…

n.b. take care with this usage pattern
useful for counters, logs &c.

can cause issues with API usage for a module



JavaScript - modular design

ES Module pattern - named export

we may define bindings for export

instead of assigning properties to implicit export object
e.g.

cannot refactor this example for named export
syntax error will be thrown

e.g.

rigid syntax helps with analysis, parsing
static analysis for ES modules

export let counter = 0
export const count = () => counter++

let counter = 0
const count = () => counter++
export counter // this will return syntax error
export count



JavaScript - modular design

ES Module pattern - export lists

lists provide a useful solution to previous refactor issue

syntax for list export easy to parse

export lists of named top-level declarations
variables &c.

e.g.

also rename binding for export, e.g.

define default with export list, e.g.

let counter = 0
const count = () => counter++
export { counter, count }

let counter = 0
const count = () => counter++
export { counter, count as increment }

let counter = 0
const count = () => counter++
export { counter as default, count as increment }



JavaScript - modular design

ES Module pattern - export from ...

expose another module’s API using export from...
i.e. a kind of pass through…

e.g.

bindings are not imported into module’s local scope

current module acts as conduit, passing bindings along
export/import chain…

module does not gain direct access to export from ... bindings
e.g. if we call increment it will throw a ReferenceError

aliases are also possible for bindings with export from...
e.g.

export { increment } from './myCounter.js'

export { increment as addition } from './myCounter.js'



JavaScript - modular design

ES Module pattern - import statements

use import to load another module

import statement are only allowed in top level of module
definition
same as export statements

helps compilers simplify module loading &c.

import default exports
give default export a name as it is imported

e.g.

importing binding to counter
syntax different from declaring a JS variable

import counter from './myCounter.js'



JavaScript - modular design

ES Module pattern - import named exports

also imported any named exports
import more than just default exports

named import is wrapped in braces
e.g.

also import multiple named exports
e.g.

import aliases are also supported
e.g.

combine default with named
e.g.

import { increment } from './myCounter.js'

import { increment, decrement } from './myCounter.js'

import { increment as addition } from './myCounter.js'

import counter, { increment } from './myCounter.js'



JavaScript - modular design

ES Module pattern - import with wildcard

we may also import using the wildcard operator
e.g.

name for wildcard import acts like object for module

call module exports on wildcard

common pattern for working with libraries &c.

import * as counter from './myCounter.js'
counter.increment()

import * as counter from './myCounter.js'
counter.increment()



JavaScript - modular design

ES Module pattern - benefits & practical usage

offers ability to explicitly publish an API
keeps module content local unless explicitly exported

similar function to getters and setters

explicit way in and out of modules

explicit options for reading and updating values…

code becomes simpler to write and manage
module offers encapsulation of code

import binding to variable, function &c.
then use it as normal…

removes need for encapsulation in main JS code
e.g. with patterns such as IIFE…

n.b. need to be careful how we use modules
e.g. priority for access, security, testing &c.

all now moved to individual modules…



JavaScript - modular design

ES Module pattern - Lib structure

Modules in JavaScript are not a new concept
e.g. CommonJS is a popular option for modular development with
Node.js

a built-in option for plain JavaScript, ES Modules.

use this option to develop and structure custom module libraries

e.g.
abstract utility modules

custom draw libraries

game renderers

…



JavaScript - modular design

ES Module pattern - JS library

an example JS library - define the following directory structure

lib directory contains custom JS libraries, which may then be
imported for use within an app

for app usage, we might structure it as follows

.
|-- lib
|   |-- spire
|   |   |-- helpers
|   |   |   |__ log.js
|   |   |__ spire.js
|__ main.js
| ...

.
|-- lib
|   |-- spire
|   |   |-- helpers
|   |   |   |__ log.js
|   |   |__ spire.js
|__ index.html
|__ main.js
| ...



JavaScript - modular design

ES Module pattern - JS library - main.js

main.js file is loaded from the index.html file
acts as the loader file for JS in an example app

also import example Spire JS library into an app using this main
loader file, e.g.

Spire object is the access point to the exported methods and
variables for custom JS library

import Spire from './lib/spire/spire.js';



JavaScript - modular design

ES Module pattern - JS library - basic usage

a custom JS library may then be accessed using this Spire object

e.g. we might call a method from the library

custom method log() provides a reusable method
e.g. use for various logging options in the application

might also call the following method using the same pattern

const greeting = 'greetings from the planet Earth';
// basic log to console
Spire.log(`${greeting}...we wish you well`);

Spire.dir({'name': 'test dir logger...'});



JavaScript - modular design

ES Module pattern - JS library - module usage

sample usage might include such helpers

we may package in the directory spire/helpers/
e.g., we currently have a log.js module for various custom loggers

we may then simply export these methods from the log.js
module, e.g.

interface for this module has now been defined relative to the
above exported modules

// basic logger to console
function log(value, ...values) {
  const logValue = console.log(value, ...values);

  return logValue;
}

// directory logger to console
function dir(value, ...values) {
  const dirValue = console.dir(value, ...values);

  return dirValue;
}

export {
    log,
    dir
}



JavaScript - modular design

ES Module pattern - JS library - import modules

import this module
allow a module to use these exported methods

interact with the exposed interface

as part of the JS library structure we may define
a root module for organising a unified interface for the overall library

e.g. use the module spire.js to import required modules and
their interfaces

then define a Spire object for the overall library, e.g.

this is then exported as the general interface for the Spire JS
library, e.g.

import * as loggers from './helpers/log.js';

const Spire = {
    log: loggers.log,
    dir: loggers.dir,
}

export default Spire;



Responsive Design & Development - Modular Designs

Fun Exercise

Three responsive designs,

Modular designs -
http://linode4.cs.luc.edu/teaching/cs/demos/424/gifs/modular/
Home Design

Reminders

Watches

For each design, consider the following

define perceived modules for each app
where might you use a module?

what type of modules can you define in each app?
e.g. logical, structural, design, performance…

from a developer perspective
consider primary modular groupings

does each module purpose help with testing?

can each module be decoupled from app?
e.g. test and use outside of current app…

~ 10 minutes



Server-side considerations - data storage

intro

tested Node.js, created a server for hosting our files and routes
with ExpressJS
read JSON from the server

updated our JSON on the server-side

works well as long as we do not need to restart, repair, update etc
our server

data lost with restart etc…

need to consider a persistent data storage
independent from the application

NoSQL options such as Redis and MongoDB

integration with Node.js



Server-side considerations - data storage

SQL or NoSQL

common database usage and storage
often thought solely in terms of SQL, or structured query language

SQL used to query data in a relational format

relational databases, for example MySQL or PostgreSQL, store
their data in tables
provides a semblance of structure through rows and cells

easily cross-reference, or relate, rows across tables

a relational structure to map authors to books, players to teams…
thereby dramatically reducing redundancy, required storage space…

improvement in storage capacities, access…
led to shift in thinking, and database design in general

started to see introduction of non-relational databases
often referred to simply as NoSQL

with NoSQL DBs
redundant data may be stored

such designs often provide increased ease of use for developers

some NoSQL examples for specific use cases
eg: fast reading of data more efficient than writing

specialised DB designs



Server-side considerations - data storage

Redis - intro

Redis provides an excellent example of NoSQL based data
storage

designed for fast access to frequently requested data

improvement in performance often due to a reduction in perceived
reliability
due to in-memory storage instead of writing to a disk

able to flush data to disk
performs this task at given points during uptime

for majority of cases considered an in-memory data store

stores this data in a key-value format
similar in nature to standard object properties in JavaScript

Redis often a natural extension of conventional data structures

Redis is a good option for quick access to data
optionally caching temporary data for frequent access



Server-side considerations - data storage

Redis - installation

On OS X, use the Homebrew package manager to install Redis

Windows port maintained by the Microsoft Open Tech Group -
Redis
or use Windows package manager - https://chocolatey.org/

try WSL

n.b. Redis on Windows is not recommended…

for Linux - download, extract, and compile Redis

brew install redis

$ wget http://download.redis.io/releases/redis-3.0.5.tar.gz
$ tar xzf redis-3.0.5.tar.gz
$ cd redis-3.0.5
$ make

https://github.com/MSOpenTech/redis
https://chocolatey.org/


Server-side considerations - data storage

Redis - server and CLI

start the Redis server with the following command,

interact with our new server directly using the CLI tool,

store some data in Redis using the set command
create a new key for notes, and then set its value to 0
if value is set, Redis returns OK

retrieve a value using the get command
returns our set value of 0

redis-server

redis-cli

set notes 0

get notes



Image - Client-side and server-side computing

Redis CLI - set and get



Server-side considerations - data storage

Redis - server and CLI

also manipulate existing values for a given key
eg: increment and decrement a value, or simply delete a key

increment key notes value by 1

decrement key notes value by 1

we can then increment or decrement by a specified amount

delete our key

incr notes

decr notes

// increment by 10
incrby notes 10
// decrement by 5
decrby notes 5

// single key deletion
del notes
// multiple keys deletion
del notes notes2 notes3



Image - Client-side and server-side computing

Redis CLI - increment and decrement



Server-side considerations - data storage

Redis and Node.js setup

test Redis with our Node.js app

new test app called 424-node-redis1

create new file, package.json to track project
eg: dependencies, name, description, version…

|- 424-node-redis1
   |- app
      |- assets
   |- node_modules
   |- package.json
   |- server.js



Server-side considerations - data storage

Redis and Node.js - package.json

we can write the package.json file ourselves or use the
interactive option

then add extra dependencies, eg: Redis, using

use package.json to help with app management and
abstraction…

{
  "name": "424-node-redis1",
  "version": "1.0.0",
  "description": "test app for node and redis",
  "main": "server.js",
  "dependencies": {
    "body-parser": "^1.14.1",
    "express": "^4.13.3",
    "redis": "^2.3.0"
  },
  "author": "ancientlives",
  "license": "ISC"
}

npm init

npm install redis --save



Server-side considerations - data storage

Redis and Node.js - set notes value

add Redis to our earlier test app

import and use Redis in the server.js file

create client to connect to Redis from Node.js

then use Redis, for example, to store access total for notes on
server

check Redis command line for change in notes value

...
var express = require("express"),
    http = require("http"),
    bodyParser = require("body-parser"),
    jsonApp = express(),
    redis = require("redis");
...

//create client to connect to Redis
redisConnect = redis.createClient();

redisConnect.incr("notes");

get notes



Server-side considerations - data storage

Redis and Node.js - get notes value

now set the counter value for our notes
add our counter to the application to record access count for notes

use the get command with Redis to retrieve the incremented
values for the notes key

get accepts two parameters - error and return value

Redis stores values and strings
convert string to integer using parseInt()
two parameters - return value and base-10 value of the specified
number

value is now being stored in a global variable notesTotal
declared in server.js

redisConnect.get("notes", function(error, notesCounter) {
  //set counter to int of value in Redis or start at 0
  notesTotal.notes = parseInt(notesCounter,10) || 0;
});

var express = require("express"),
    http = require("http"),
    bodyParser = require("body-parser"),
    jsonApp = express(),
    redis = require("redis"),
    notesTotal = {};



Server-side considerations - data storage

Redis and Node.js - get notes value

store notes counter value in Redis

create new route in server.js
monitor the returned JSON for the counter

start using it with our application
load by default, within event handler…

render to DOM

store as a internal log record

link to create note event handler…

DEMO - 424-node-redis1

//json get route
jsonApp.get("/notesTotal.json", function(req, res) {
  res.json(notesTotal);
});

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-redis1


Image - Client-side and server-side computing

Node and Redis - 424-node-redis1



Server-side considerations - data storage

MongoDB - intro

MongoDB is another example of a NoSQL based data store
a database that enables us to store our data on disk

unlike MySQL, for example, it is not in a relational format

MongoDB is best characterised as a document-oriented

database

conceptually may be considered as storing objects in collections

stores its data using the BSON format
consider similar to JSON

use JavaScript for working with MongoDB



Server-side considerations - data storage

MongoDB - document oriented

SQL database, data is stored in tables and rows

MongoDB, by contrast, uses collections and documents

comparison often made between a collection and a table
NB: a document is quite different from a table

a document can contain a lot more data than a table

a noted concern with this document approach is duplication of
data

one of the trade-offs between NoSQL (MongoDB) and SQL

SQL - goal of data structuring is to normalise as much as possible
thereby avoiding duplicated information

NoSQL (MongoDB) - provision a data store, as easy as possible
for the application to use



Server-side considerations - data storage

MongoDB - BSON

BSON is the format used by MongoDB to store its data

effectively, JSON stored as binary with a few notable differences
eg: ObjectId values - data type used in MongoDB to uniquely identify
documents

created automatically on each document in the database

often considered as analogous to a primary key in a SQL database

ObjectId is a large pseudo-random number

for nearly all practical occurrences, assume number will be unique

might cease to be unique if server can’t keep pace with number
generation…

other interesting aspect of ObjectId
they are partially based on a timestamp

helps us determine when they were created



Server-side considerations - data storage

MongoDB - general hierarchy of data

in general, MongoDB has a three tiered data hierarchy

1. database * normally one database per app * possible to have multiple
per server * same basic role as DB in SQL

2. collection * a grouping of similar pieces of data * documents in a
collection * name is usually a noun * resembles in concept a table in SQL
* documents do not require the same schema

3. document * a single item in the database * data structure of field and
value pairs * similar to objects in JSON * eg: an individual user record



Server-side considerations - data storage

MongoDB - install and setup

install on Linux

install on Mac OS X
again, we can use Homebrew to install MongoDB

then follow the above OS X install instructions to set paths…

install on Windows

// update brew packages
brew update
// install MongoDB
brew install mongodb

https://docs.mongodb.org/manual/administration/install-on-linux/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/


Server-side considerations - data storage

MongoDB - a few shell commands

issue following commands at command line to get started - OS X
etc

switch to, create a new DB (if not available), and drop a current
DB as follows

DB is not created permanently until data is created and saved
insert a record and save to current DB

only permanent DB is the local test DB, until new DBs created…

// start MongoDB server - terminal window 1
mongod
// connect to MongoDB - terminal window 2
mongo

// list available databases
show dbs
// switch to specified db
use 424db1
// show current database
db
// drop current database
db.dropDatabase();



Server-side considerations - data storage

MongoDB - a few shell commands

add an initial record to a new 424db1 database.

our new DB 424db1 will now be saved in Mongo

we’ve created a new collection, notes

// select/create db
use 424db1
// insert data to collection in current db
db.notes.insert({
...   "travelNotes": [{
...   "created": "2015-10-12T00:00:00Z",
...   "note": "Curral das Freiras..."
...   }]
... })

// show databases
show dbs
// show collections
show collections



Server-side considerations - data storage

MongoDB - test app

now create a new test app for use with MongoDB

create and setup app as before
eg: same setup pattern as Redis test app

add Mongoose to our app
use to connect to MongoDB

helps us create a schema for working with DB

update our package.json file
add dependency for Mongoose

test server and app as usual from app’s working directory

// add mongoose to app and save dependency to package.json
npm install mongoose --save

node server.js



Server-side considerations - data storage

MongoDB - Mongoose schema

use Mongoose as a type of bridge between Node.js and
MongoDB

works as a client for MongoDB from Node.js applications

serves as a useful data modeling tool
represent our documents as objects in the application

a data model
object representation of a document collection within data store

helps specify required fields for each collection’s document

known as a schema in Mongoose, eg: NoteSchema

using schema, build a model
by convention, use first letter uppercase for name of data model object

now start creating objects of this model type using JavaScript

then use the Mongoose object to interact with the MongoDB
using functions such as save and find

var NoteSchema = mongoose.Schema({
  "created": Date,
  "note": String
});

var Note = mongoose.model("Note", NoteSchema);

var funchalNote = new Note({
"created": "2015-10-12T00:00:00Z",
"note": "Curral das Freiras..."
});



Server-side considerations - data storage

MongoDB - test app

with our new DB setup, our schema created
now start to add notes to our DB, 424db1, in MongoDB

in our server.js file
need to connect Mongoose to 424db1 in MongoDB

define our schema for our notes

then model a note

use model to create a note for saving to 424db1

...
//connect to 424db1 DB in MongoDB
mongoose.connect('mongodb://localhost/424db1');
//define Mongoose schema for notes
var NoteSchema = mongoose.Schema({
  "created": Date,
  "note": String
});
//model note
var Note = mongoose.model("Note", NoteSchema);
...



Server-side considerations - data storage

MongoDB - test app

then update app’s post route to save note to 424db1

//json post route - update for MongoDB
jsonApp.post("/notes", function(req, res) {
  var newNote = new Note({
    "created":req.body.created,
    "note":req.body.note
  });
  newNote.save(function (error, result) {
    if (error !== null) {
      console.log(error);
      res.send("error reported");
    } else {
      Note.find({}, function (error, result) {
        res.json(result);
      })
    }
  });
});



Server-side considerations - data storage

MongoDB - test app

update our app’s get route for serving these notes

modify buildNotes() function in json_app.js to get return
correctly

now able to enter, save, read notes for app

notes data is stored in the 424db1 database in MongoDB

notes are loaded from DB on page load

notes are updated from DB for each new note addition

DEMO - 424-node-mongo1

//json get route - update for mongo
jsonApp.get("/notes.json", function(req, res) {
  Note.find({}, function (error, notes) {
   //add some error checking...
   res.json(notes);
  });
});

...
//get travelNotes
var $travelNotes = response;
...

https://github.com/csteach424/source/tree/master/week12/nodejs/424-node-mongo1


Image - Client-side and server-side computing

Node and MongoDB - 424-node-mongo1



Client-side - Data - Node, Express, MongoDB &c.

extra notes

Heroku
Heroku & Git

Heroku & MongoDB

Heroku & Postman

Node.js
Node.js outline

Node.js updating

Node.js & Express
Node.js and Express

Node.js & Express starter

Node.js, Express, and MongoDB
Node.js and MongoDB

Node.js API
Data stores & APIs - MongoDB and native driver

Node Todos API

Testing - Node Todos API

Node.js & Web Sockets
Node.js & Socket.io

https://csteach424.github.io/assets/docs/extras/2019/various/git-heroku-setup.pdf
https://csteach424.github.io/assets/docs/extras/2019/various/heroku-mongodb-setup.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/heroku-mongo-postman.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/nodejs-outline.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/update-nodejs.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/nodejs-express-outline.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/node-express-starter.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/nodejs-mongo-outline.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/mongodb-native-driver-api.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/node-todos-api.pdf
https://csteach424.github.io/assets/docs/extras/2019/node-api-todos/testing-todos-api.pdf
https://csteach424.github.io/assets/docs/extras/2019/node/web-sockets/notes-nodejs-socketio.pdf


Resources

Chocolatey for Windows
Chocolatey package manager for Windows

Homebrew for OS X
Homebrew - the missing package manager for OS X

MongoDB
MongoDB - For Giant Ideas

MongoDB - Getting Started (Node.js driver edition)

MongoDB - Getting Started (shell edition)

Mongoose
MongooseJS Docs

Node.js
Node.js home

Node.js - download

ExpressJS

ExpressJS body-parser

Redis
redis.io

redis commands

redis - npm

try redis

Windows support

https://chocolatey.org/
http://brew.sh/
https://www.mongodb.org/
https://docs.mongodb.org/getting-started/node/
https://docs.mongodb.org/getting-started/shell/
http://mongoosejs.com/index.html
https://nodejs.org/en/
https://nodejs.org/en/download/
http://expressjs.com/
https://github.com/expressjs/body-parser
http://redis.io/
http://redis.io/commands
https://www.npmjs.com/package/redis
http://try.redis.io/
https://github.com/MSOpenTech/redis

