Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 13

Dr Nick Hayward

Systems Management - Build Tools & Project
Development

Extra notes

= Systems
e Environments & Distributions
e Build first - overview and usage

= Grunt
e basics
e /ntegrate with project outline and development
e /ntegrate with project release

= Webpack
e selup for local project
e basic usage
» gssets for local project

JavaScript - Prototype

intro

= along with the following traits of JS (ES6 ...,
functions as first-class objects
versatile and useful structure of functions with closures

combine generator functions with promises to help manage async code
async & await..

m protfolype object may be used to delegate the search for a
particular property

= a profotypeis a useful and convenient option for defining
properties and functionality
e accessible to other objects

= a profotypeis a useful option for replicating many concepts in
traditional object oriented programming

JavaScript - Prototype

understanding prototypes

= in JS, we may create objects, e.g. using object-literal notation
e a simple value for the first property
e a function assigned to the second property
e another object assigned to the third object

let testObject = {
propertyl: 1,
prooerty2: function() {},
property3: {}

= as a dynamic language, JS will also allow us to
e modify these properties
e delete any not required
e orsimply add a new one as necessary

= this dynamic nature may also completely change the properties in
a given object

= this issue is often solved in traditional object-oriented languages
using inheritance

= in JS, we can use profolype to implement inheritance

JavaScript - Prototype

basic idea of prototypes

= every objectcan have a reference to its profotype
e adelegate object with properties - default for child objects

= JS will initially search the onject for a property
e then, search the profotype
e je. prototype is a fall back object to search for a given property &c.

const objectl = { title: 'the glass bead game' };
const object2 = { author: 'herman hesse' };

console.log(objectl.title);
Object.setPrototypeOf(objectl, object2);

console.log(objectl.author);

= in the above example, we define two objects
e properties may be called with standard object notation
e can be modified and mutated as standard
e usesetPrototypeOf() to set and update object’s prototype

= e.g. objectl as object to update
e object2 as the object to set as prototype

= if requested property is not available on objectl
o JS will search defined prototype...

= author available as property of prototype for objectl
= demo - basic prototype

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype/

JavaScript - Prototype

protolype inheritance

m Protolypes, and their properties, can also be inherited
e creates a chain of inheritance...

= eqg.

const objectl = { title: 'the glass bead game' };
const object2 = { author: 'herman hesse' };

const object3

{ genre: 'fiction' };
console.log(objectl.title);

Object.setPrototypeOf(objectl, object2);
Object.setPrototypeOf(object2, object3);

console.log(objectl.author);
console.log(genre from prototype chain = ${objectl.genre}); // use template Literal to
output...

= objectl has access to the prototype of its parent, object2

= g property search against objectl1 will now include its own
prototype, object2
e and its prototype as well, object3

= output for objectl.genre will return the value stored in the
property on object3

= demo - basic set prototype

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-chain/

JavaScript - Prototype

object constructor & prototypes

= object-oriented languages, such as Java and C++, include a class
constructor

e provides known encapsulation and structuring
e constructor is initialising an object to a known initial state...

= j.e. consolidate a set of properties and methods for a class of
objects in one place

= JS offers such a mechanism, although in a slightly different form
to Java, C++ &c.

= JS still uses the new operator to instantiate new objects via
constructors

e JS does not include a true class definition comparable to Java &c.
e ES6 class is syniactic sugar for the prototype...

= new operator in JS is applied to a constructor function
o this triggers the creation of a new object

JavaScript - Prototype

prototype object

= in JS, every function includes their own prototype object
e set automatically as the prototype of any created objects

e eg.

//constructor for object

function LibraryRecord() {
//set default value on prototype
LibraryRecord.prototype.library = 'castalia';

}

const bookRecord = new LibraryRecord();

console.log(bookRecord.library);

= |ikewise, we may set a default method on an instantiated object’s
prototype

= demo - basic prototype object

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance/

JavaScript - Prototype

instance properties

= as JS searches an object for properties, values or methods
e /nstance properties will be searched before trying the prototype
* a known order of precedence will work.

e eg.

//constructor for object

function LibraryRecord() {
// set property on instance of object
this.library = 'waldzell';

//set default value on prototype
LibraryRecord.prototype.library = 'castalia';

}

const bookRecord = new LibraryRecord();

console.log(bookRecord.library);

= this refers directly to the newly created object
e properties in constructor created directly on instantiated object
e e.g. instance of LibraryRecord()

= search for 1ibrary property against object
» do not need to search against prototype for this example

= known side-effect
e /nstantiate multiple objects with this constructor

e each object gets its own copy of the constructor's properties & access to
same prototype

e may end up with multiple copies of same properties in memory

= f replication is required or likely
e more efficient to store properties & methods against the prototype

= demo - basic prototype object properties

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance-props/

JavaScript - Prototype

side effects of JS dynamic nature

= JS is a dynamic language
e properties can be added, removed, modified...

= dynamic nature is true for prototypes
e function prototypes
e object prototypes

//constructor for object

function LibraryRecord() {
// set property on instance of object
this.library = 'waldzell';

// create instance of LibraryRecord - call constructor with “new” operator
const bookRecordl = new LibraryRecord();

// check output of value for Library property from constructor
console.log(this library = ${bookRecordl.library});

// add method to prototype after object created
LibraryRecord.prototype.updateLibrary = function() {
return this.retreat = 'mariafels’;

}s

// check prototype updated with new method
console.log(this retreat = ${bookRecordl.updateLibrary()});

// then overwrite prototype - constructor for existing object unaffected...
LibraryRecord.prototype = {

archive: 'mariafels’,

order: 'benedictine’

}s

// create 1instance object of LibraryRecord...with updated prototype
const bookRecord2 = new LibraryRecord();

// check output for second instance object

console.log(updated archive = ${bookRecord2.archive} and order = ${bookRecord2.order});
// check output for second instance object - Library

console.log(second instance object - library = ${bookRecord2.library});

// check if prototype updated for first instance object - NO
console.log(first instance object = ${bookRecordl.order});

// manual update to prototype for first instance object still available
console.log(this retreat2 = ${bookRecordl.updateLibrary()});

// check prototype has been fully overwritten - e.g. “updatelLibrary()" no longer available on
prototype for new instance object

try {

// updates to original prototype are overridden - error 1is returned for second instantiated
object...

console.log(this retreat = ${bookRecord2.updateLibrary()});
} catch(error) {
console.log(modified prototype not available for new object...\n ${error});

}

= demo - basic prototype dynamic

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-dynamic/

JavaScript - Prototype

object typing via constructors

= check function used as a constructor to instantiate an object
e Using constructor property

//constructor for object

function LibraryRecord() {
//set default value on prototype
LibraryRecord.prototype.library = 'castalia';

}

// create instance object for LibraryRecord
const bookRecord = new LibraryRecord();

// output constructor for instance object
console.log(constructor = ${bookRecord.constructor});

// checkR if function was constructor (use ternary conditional)

const check = bookRecord.constructor === LibraryRecord ? true : false;
// output result of check

console.log(check);

= demo - basic constructor check

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-check-constructor/

JavaScript - Prototype

instantiate a new object using a constructor reference

= Use a constructor to create a new instance object

= also use constructor() of new object to create another object
= second object is still an object of the original constructor

//constructor for object

function LibraryRecord() {
//set default value on prototype
LibraryRecord.prototype.library = 'castalia’;

}

const bookRecord = new LibraryRecord();
const bookRecord2 = new bookRecord.constructor();

JavaScript - Prototype

achieving inheritance

m /nheritance enables re-use of an object’s properties by another
object
= helps us efficiently avoid repetition of code and logic
e /mproving reuse and data across an application

= in JS, a prototype chain to ensure inheritance works beyond
simply copying prototype properties
e e.g. a book in a corpus, a corpus in an archive, an archive in a library...

JavaScript - Prototype

inheritance with prototypes - part 1

m /nheritancein JS

e create a protolype chain using an instance of an object as protolype for
another object

e eg.
SubClass.prototype = new SuperClass()

= this pattern works as a prototype chain for inheritance
e profotype of SubClass instance as an instance of SupercClass
o profotype will have all the properties of SuperClass
e SuperClass may also have properties from its superclass...

= prototype chain created of expected inheritance

JavaScript - Prototype

inheritance with prototypes - part 2

= e.g. inheritance achieved by setting prototype of Archive to
instance of Library object

//constructor for object
function Library() {
// instance properties
this.type = 'library';
this.location = 'waldzell';

// constructor for Archive object
function Archive(){
// instance property
this.domain = 'gaming';

// update prototype to parent Libary - instance relative to parent & child
Archive.prototype = new Library();

// instantiate new Archive object
const archiveRecord = new Archive();

// check instance object - against constructor
if (archiveRecord instanceof Archive) {
console.log(archive domain = ${archiveRecord.domain});

// check instance of archiveRecord - instance of Library & Archive
if (archiveRecord instanceof Library) {
// type property from Library
console.log(Library type = ${archiveRecord.type});
// domain property from Archive
console.log(Archive domain = ${archiveRecord.domain});

JavaScript - Prototype

issues with overriding the constructor property

= setting Library object as defined prototype for Archive
constructor

Archive.prototype = new Library();

= connection to Archive constructor lost - we may check
constructor

// check constructor used for archiveRecord object

if (archiveRecord.constructor === Archive) {
console.log('constructor found on Archive...');
} else {

// Library constructor output - due to prototype
console.log(Archive constructor = ${archiveRecord.constructor});

}

Library constructor will be returned

e n.b. may become an issue - constructor property may be used to check
original function for instantiation

= demo - inheritance with prototype

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto/

JavaScript - Prototype

some benefits of overriding the constructor property

//constructor for object
function Library() {
// instance properties
this.type = 'library’;
this.location = 'waldzell';

// extend prototype
Library.prototype.addArchive = function(archive) {
console.log(archive added to library - ${archive});
// add archive property to instantiate object
this.archive = archive;
// add property to Library prototype
Library.prototype.administrator = 'knechts';

// constructor for Archive object
function Archive(){
// instance property
this.domain = 'gaming';

// update prototype to parent Libary - instance relative to parent & child
Archive.prototype = new Library();

// instantiate new Archive object

const archiveRecord = new Archive();

// call addArchive on Library prototype
archiveRecord.addArchive('mariafels");

// check instance object - against constructor
if (archiveRecord instanceof Archive) {
console.log(archive domain = ${archiveRecord.domain});

// check constructor used for archiveRecord object
if (archiveRecord.constructor === Archive) {
console.log('constructor found on Archive...');
} else {
console.log(Archive constructor = ${archiveRecord.constructor});
console.log(Archive domain = ${archiveRecord.domain});
console.log(Archive = ${archiveRecord.archive});

console.log(Archive admin = ${archiveRecord.administrator});

// check instance of archiveRecord - instance of Library & Archive
if (archiveRecord instanceof Library) {
// type property from Library
console.log(Library type = ${archiveRecord.type});
// domain property from Archive
console.log(Archive domain = ${archiveRecord.domain});

// instantiate another Archive object

const archiveRecord2 = new Archive();

// output instance object for second archive

console.log('Archive2 object = ', archiveRecord2);

// check if archiveRecord2 object has access to updated archive property...NO
console.log(Archive2 = ${archiveRecord2.archive});

// check if archiveRecord2 object has access to updated adminstrator property...YES

console.log(Archive2 administrator = ${archiveRecord2.administrator});

= demo - inheritance with prototype - updated

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto2/

JavaScript - Prototype

configure object properties - part 1

= each object property in JS is described with a property descriptor
= use such descriptors to configure specific keys, e.g.

m configurable - boolean setting
o [rue = property’s descriptor may be changed and the property deleted
e false = no changes &c.

= enumerable - boolean setting
o [rue = specified property will be visible in a for-in loop through object’s
properties

= value - specifies value for property (default is undefined)

= writable - boolean setting
e [frue = the property value may be changed using an assignment

m get- defines the getter function, called when we access the
property
e n.b. can’t be defined with value and writable

= Set- defines the setter function, used whenever an assignment is
made to the property
e n.b. can’t be defined with value and writable

= e.g. create following property for an object

archive.type = 'private’;

= archive
o will be configurable, enumerable, writable
» with a value of private
o getand set will currently be undefined

JavaScript - Prototype

configure object properties - part 2

= to update or modify a property configuration use built-in
Object.defineProperty() method

= this method takes an object, which may be used to
o define or update the property

define or update the name of the property

define a property descriptor object

e.g.

// empty object
const archive = {};

// add properties to object
archive.name = "waldzell";
archive.type = "game";

// define property access, usage, &c.
Object.defineProperty(archive, "access", {
configurable: false,
enumerable: false,
value: true,
writable: true

})s

// check access to new property
console.log(${archive.access}, access property available on the object...”);

/*
* check we can't access new property in Loop
* - for..in iterates over enumerable properties
*/
for (let property in archive) {
// Llog enumerable
console.log(key = ${property}, value = ${archive[property]});
}

/*
* plain object values not iterable...
* - peturns expected TyoeError - archive is not iterable

*/

for (let value of archive) {
// value not Llogged...
console.log(value);

= demo - configure object properties

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/object-properties/

JavaScript - Prototype

using ES Classes

= ESG6 provides a new class keyword
e enables object creation and aida in inheritance
e jt's syntactic sugar for the protolype and instantiation of objects

e eg.

// class with constructor & methods
class Archive {
constructor(name, admin) {
this.name = name;
this.admin = admin;
}
// class method
static access() {
return false;
}
// instance method
administrator() {
return this.admin;

// instantiate archive object
const archive = new Archive('Waldzell', 'Knechts');

// check parameter usage with class
const nameCheck = archive.name === “Waldzell® ? archive.name : false;

// log archive name

console.log(class archive name = ${nameCheck});

// call class method

console.log(Archive.access());

// call instance method

console.log(archive administrator = ${archive.administrator()});

= demo - basic ES Class

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-class/

JavaScript - Prototype

ES classes as syntactic sugar

m classes in ES6 are simply syntactic sugar for prototypes.

= 3 prototype implementation of previous Archive class, and
usage... -not* e.g.

// constructor function
function Archive(name, admin) {
this.name = name;
this.admin = admin;

// instance method
this.administrator = function () {
return this.admin;

// add property to constructor
Archive.access = function() {
return false;

}s

// instantiate object - pass arguments
const archive = new Archive('Waldzell', 'Knechts');

// check parameter usage with ternary conditional...
const nameCheck = archive.name === “Waldzell® ? archive.name : false;

// output name check...

console.log(prototype archive name = ${nameCheck});

// call constructor only method

console.log(Archive.access());

// call 1instance method

console.log(archive administrator = ${archive.administrator()});

= demo - basic Prototype equivalent

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-equivalent/

Project Outline - Setup & Usage

intro

= consider task runners and build tools
o e.g. Grunt, Webpack...
e relative to build distributions and development environments

= for a new project, begin by initialising a G/t repository
e /nitialise in the root directory

= also add a .gitignore file to our local repository
e define files and directories not monitored by Git's version control/

= then initialise a new NodedJS based project using NPM
o execute the following terminal command

npm init

= answer initial npm init questions or use suggested defaults

= package. json file created
e delault metadata may be updated as project develops

Project Outline - Setup & Usage

directory structure - part 1

= basic project layout may follow a sample directory structure,

-- build
|-- css
|-- img
|-- 3s

|-- assets

-- css

|-- 3s

|_ app.js

-- temp

-- testing

index.html //applicable for client-side, webview apps &c.

= sample needs to be modified relative to a given project

= build, temp, and testing will include files and generated content
e from various build tasks

= build and temp directories may be created and cleaned
automatically
e as part of the build tasks
e do not need to be created as part of the initial directory structure

Project Outline - Setup & Usage

directory structure - part 2

= example structure adds index.html file to root of project
structure

e e.g. for client-side and webview based development

= structure includes build directories
e may not add until build tasks for a release distribution
o commonly include bundling, minification, uglifying, &c.

= build directory will be part of a build task
= also update our project’s .gitignore file

.DS_Store
node_modules/
*,log

build/

temp/

Project Outline - Setup & Usage

install and configure Grunt

= start by installing and configuring Grunt for the above sample
project structure

npm install grunt --save-dev

= install assumes a global scope for the NPM package grunt-cli
e sagves metadata to package. json for development builds only

= to use Grunt with a project
e add a config file, Gruntfile. js to the project’s root directory
» /ncludes initial exports for tasks and targets

= we may then load and register the required tasks

Project Outline - Setup & Usage

Gruntfile. js - initial exports

= Grunt config is again dependent on specifics of the project

= we may add some common options

e e.g. linting, build distributions, minification and bundling, uglifying, sprites
&c.

= use of rollup will depend upon required support for modules
e /ncluding ES modules within JavaScript apps

module.exports = function(grunt) {
grunt.initConfig(
{
jshint: {
all: ['src/**/*,js'],
options: {
'esversion': 6,
'globalstrict’: true,
‘devel’: true,
"browser': true
}
}J
rollup: {
release: {
options: {},
files: {
"temp/js/rolled.js': ['src/js/main.js'],
}s
}
}s
uglify: {
release: {
files: {
'build/js/mini.js': 'temp/js/*.js’'
3
}
}J
sprite: {
release: {
src: 'src/assets/images/*',
dest: 'build/img/icons.png’,

}s

);

destCss:

}s

clean: {
folder: ['temp'],

}

'build/css/icons.css’

Project Outline - Setup & Usage

Gruntfile. js - custom task

= we may add custom tasks such as metadata generation,

buildMeta: {
options: {
file: './meta.md’,
developer: 'debug tester',
build: 'debug’
}
b

= we may add tasks for CSS &c. as we continue to develop the
project

Project Outline - Setup & Usage

Gruntfile. js - use tasks - part 1

= after defining the exports for tasks and targets,
e we can load the required Grunt plugin modules
e register the required tasks

= we may run these registered tasks together
e orseparately relative to distribution and environment

= e.g. load the plugins for the required tasks,

// linting, module bundling, minification, directory cleanup...
grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-rollup');
grunt.loadNpmTasks('grunt-contrib-uglify-es');
grunt.loadNpmTasks('grunt-spritesmith');
grunt.loadNpmTasks('grunt-contrib-clean');

Project Outline - Setup & Usage

Gruntfile.js - use tasks - part 2

= plugins correspond to installed NPM packages for current project
e eg.

npm install grunt-contrib-jshint --save-dev
npm install grunt-rollup --save-dev

npm install grunt-contrib-uglify-es --save-dev
npm install grunt-spritesmith --save-dev

npm install grunt-contrib-clean --save-dev

Project Outline - Setup & Usage

Gruntfile. js - register custom task

= we may then register a custom task for various targets in the
builds

e eg

// custom task - build meta for default debug
grunt.registerTask('buildMeta', function() {
console.log('debug build...');
const options = this.options();
metaBuilder(options);

1)

//custom taskR - build meta for release
grunt.registerTask('buildMeta:release’', function() {
console.log('release build...");
// define task options - incl. defaults
const options = this.options({
file: 'build/release_meta.md’,
developer: "spire & signpost”,
build: "release"
1
metaBuilder(options);

1)

Project Outline - Setup & Usage

Gruntfile. js - register builds

= then register some build tasks
e lasks may combine the options from the config
e provides the execution of staggered tasks for a single build call

= e.g. a debug build may include
» [inting, custom metadata, and a clean task

// debug build tasks - default tasks during development...
grunt.registerTask('build:debug’', ['jshint', 'buildMeta', 'clean']);

= we may also define a build process for staging or release

// build tasks with specific 'release’ targets...
grunt.registerTask('build:release’, ['jshint', 'rollup:release’, 'uglify:release’,
'sprite:release’, 'buildMeta:release', 'clean']);

= we may run and test Grunt for the current project
e relative to project requirements, e.g. debug or release

grunt build:debug

m Or

grunt build:release

Project Outline - Setup & Usage

development with environments

= as we develop more complex apps
e need to consider how we configure and use such build tools

= e.g. with various environments
e development

e slaging

e production / release

= we can define a debug or release distribution build
o use with each of these environments

Project Outline - Setup & Usage

environment setup - development - part 1

= app development will primarily focus on a debug distribution
e provide tasks such as linting, testing, metadata, watch, &c.
e becomes common distribution for active, ongoing development

= also need to ensure environment variables are aggregated
» allows the app to run as expected

e Sstored in the same manner regardless of debug orrelease

= difference is use of encryption
e and the nature of the required environment configs

= bundling with minification and uglifying

o ysually added to a project as part of release distribution
e may serve little practical benefit for ongoing active development

Project Outline - Setup & Usage

environment setup - development - part 2

= we may define a common structure for Node based apps as
follows

-- debug

-- src
|-- assets
|-- 3s

-- temp

-- testing

__ app.Js

= develop the app, including the app source code, in the src
directory

= build our app in the debug directory
e each time we need to check and debug usage

= temporary build artifacts may be added to the temp directory
o cleaned after each build workflow has been completed

= e.g. each time we complete a call to build:debug
e clean, where applicable, the build artifacts

= we may also choose to combine debug and temp
e asingle temp directory
e depending upon project requirements

Project Outline - Setup & Usage

environment setup - development - part 3

= for a client-side or mobile hybrid app
e Slightly modify this directory structure, e.g.

-- debug
|-- css
|-- img
|-- Js

|-- assets
|-- css
|-- Js

|_ app.js
-- temp

-- testing

index.html

= assets directory may include raw image files, icons, &c.

= test builidng these image assets as sprites
e added to the img directory during the build

= also use /image optimisation at this stage
o e.g. test Ul and UX performance

= part of the debug distribution is the use of watch for live reloading
e nodemon for Node.js based apps

= also consider tasks to aggregate logging within the app’s code

= may include explicit console.log() statements, and error
handling

Project Outline - Setup & Usage

environment setup - development Grunt config - part 1

= update our Grunt config
e use adebug distribution in current development environment

= e.g. add any required build options for debug
e then integrate required environment config variables &c.

m start with unencrypted JSONfiles

= may contain defaults for options
e e.g. current environment, servers port number &c.

"NODE_ENV": "development",
"PORT": 3826

Project Outline - Setup & Usage

environment setup - development Grunt config - part 2

= define some additional project directories
» e.g. encrypted and decrypted config files

|-- env

| |-- defaults
| |-- private
| |-- secure

= env/defaults contains the unencrypted defaults
e as definedindefaults. json

= env/private includes decrypted secure files

= env/secure should be reserved for encrypted files
* we may add to version control/

= env/private should not be commited to version control

= a few different options for file encryption

o e.g. RSA based public/private keys, GNU Privacy Guard (GPG, or
GnuPG)

= further details in the extra notes
e encryption, signatures, and verification of files
» /ncludes step by step examples for working with RSA
e and extra layers of verification for a file with generated signatures

Project Outline - Setup & Usage

merging config sources

= as a project develops, we may produce various sources of
configuration

= may include sources such as
e JSON files

JavaScript objects

environment variables

process arguments

= to help merge such disparate config sources
e aadd an NPM module such as nconf
e nconf

= or we may simply load environment variables
e e.g. from a project’s . env file using the package dotenv
o dotenv

https://www.npmjs.com/package/nconf
https://www.npmjs.com/package/dotenv

Project Outline - Setup & Usage

sample waterfall with nconf

= with nconf we may bundle various config stages for a project
e eg.

const nconf = require('nconf');
nconf.argv();

nconf.env();

nconf.file('dev', 'development.json');
module.exports = nconf.get.bind(nconf);

= getting config variables and settings from defined stores in defined
cascading order

= order is prioritised
» allowing overrides and defaults at various stages of the cascade
e e.g. Ifavalueis given in the command arguments, argv

Project Outline - Setup & Usage

continuous development

= continuous development (CD)

e allows a developer to work on app code &c. without many customary
Interruptions

e e.g. serverreboots, code refreshes, debugging, linting &c.

= CD often reduces repetitive tasks in a development flow
e helping to automate processes and development

= build process may be automated and run whenever a pertinent
change is detected

Project Outline - Setup & Usage

continuous development - add awatch task - part 1

= add a watchtask to a build flow
o allow a rebuild each time a given file is edited and then saved

= e.g. for Grunt, we may add the plugin module grunt-contrib-
watch

npm install grunt-contrib-watch --save-dev

= and update the Grunt config

grunt.loadNpmTasks('grunt-contrib-watch');

= plugin watches file system for code changes in a tracked project
e then runs the affected tasks as required

= basic watch example might include the following

watch: {
js: A
tasks: ['jshint:client'],
files: ['src/**/*.js']

}

= continuously checks src directory for JavaScript file change or
addition

e then runs the jshint:client task

= this type of watch provides a broad approach to managing project
changes

Project Outline - Setup & Usage

continuous development - add awatch task - part 2

= then include additional fargets relative to project requirements
e e.g. add further JS specific targets, CSS, sprites &c.

= we may also define separate build tasks to use watch
e e.g.

// dev taskRs - combine debug with watch
grunt.registerTask('dev', ['build:debug', 'watch']);

= which we may call as follows,

grunt dev

= executes the tasks for build:debug
= then starts waiching the specified targets

Project Outline - Setup & Usage

continuous development - live reload - part 1

= also use watch to add support for /ive reloads
= built-in support with the grunt-contrib-watch plugin

= reload option uses web sockets

» originally designed for browser based real-time communication and
synchronisation

= LiveReload option listens for changes to monitored files,
directories &c.
e then reload and refresh the current active app

= support for the LiveReload task may added as follows

livereload: {
options: {
livereload: true

}s
files: ['build/**/*', './*.html'],
}s

= provides a live reload server - usually runs at localhost:35729

= object includes a property to confirm 1livereload
e then defines files to watch to initiate a reload

= e.g. in this example

e walching build directory, its children, then the root directory for any
HTML files

» /ncludes any changes to default index. html file

= 1n.b. this server does not actually reload the app for us
e need to use a server to host the app
e host server is monitoring this Livereload server

Project Outline - Setup & Usage

continuous development - live reload - part 2

= livereload also provides a setup script for the test app

= two common options for use
e add a link to this script in our project’s index. html file

<script src="http://localhost:35729/1ivereload.js"></script>

= Or
e use a Grunt plugin, grunt-contrib-connect

= grunt-contrib-connect
o gutomatically injects script in our app’s code
e preferred option for ongoing development

= install this plugin as follows

npm install grunt-contrib-connect --save-dev

= then update the Gruntfile. js config

connect: {

server: {
options: {
port: 8080,
base: '.',

hostname: '*',
protocol: 'http’,
livereload: true,

}s
s

Project Outline - Setup & Usage

continuous development - live reload - part 3

= need to update the required build tasks to use these plugins
e e.g. add connect and livereload support to dev build task

// dev tasks - combine debug with watch, live server, and Live reload
grunt.registerTask('dev', ['build:debug', 'connect', 'watch']);

= then run this build task

grunt dev -v

= -v flag outputs verbose messages
o helps initially check everything is running as expected

Project Outline - Setup & Usage

add CSS support - part 1

= app styles will, customarily, include a combination of options
e e.g. CSS stylesheets and dynamic JavaScript based style properties

= to work with CSS stylesheets, similar to JavaScript files
e consider a Grunt task for minifying these files

= we need to install the Grunt module, grunt-contrib-cssmin

npm install grunt-contrib-cssmin --save-dev

= then add the following to include this package in the
Gruntfile. js config

grunt.loadNpmTasks('grunt-contrib-cssmin');

= and update the build task for a release distribution

// build tasks with specific 'release’ targets...
grunt.registerTask('build:release’, ['rollup:release’, 'cssmin:release', 'uglify:release’,
'buildMeta:release', 'clean']);

= referencing the following task for cssmin

cssmin: {
release: {
options: {
banner: '/* minified css file - basic-es-modules */'
}s
files: {
'build/css/mini.css': [

'src/css/main.css’,
]
}

1

Project Outline - Setup & Usage

add CSS support - part 2

= with the minified CSS stylesheet built
e add a link to this stylesheet in the index.html file

<I-- css styles - main -->
<link rel="stylesheet" href="./build/css/mini.css">

= then update the watch task by adding the following for CSS

css: {
files: ['src/**/*.css'],
tasks: ['cssmin:release’]

s

= then run the usual Grunt build tasks

o e.g. fo minify the CSS stylesheets, and watch for any updates and
changes...

Project Outline - Setup & Usage

Watch update

= current watch task includes support for CSS, JS, and HTML

= includes checks for modifications
e e.g. o any defined src directories for CSS and JS
e monitors any HTML files in the app’s root directory

= a working watch task is as follows

watch: {
Js: o
files: ['src/**/*.,js'],
tasks: ['jshint:client', 'rollup:release’, 'uglify:release']
)
css: {
files: ['src/**/*.,css'],
tasks: ['cssmin:release’]
)
html: {
files: ['./*.html"]
s
livereload: {
options: {
livereload: true
}s
files: ['build/**/*', *'./*_ html'],
3
}s

Design Patterns - Observer - intro

= observerpattern is used to help define a one fo many dependency
between objects

= as subject (object) changes state
e any dependent observers (object/s) are then notified automatically
e and then may update accordingly

= managing changes in state to keep app in sync

= creating bindings that are event driven
e /nstead of standard push/pull

= standard usage for this pattern with bindings
e one fo many
e one way
e commonly event driven

Image - Observer Pattern

subscribe

unsubscribe

Observer Pattern

Design Patterns - Observer - notifications

= observer pattern creates a model of event subscription with
notifications

= benefit of this pattern
e fends fto promote loose coupling in component design and development

= pattern is used a lot in JavaScript based applications
e userevents are a common example of this usage

= pattern may also be referenced as Pub/Sub
e there are differences between these patterns - be careful..

Design Patterns - Observer - Usage

The observer pattern includes two primary
objects,

= subject

provides interface for observers to subscribe and unsubscribe
sends notifications to observers for changes in state
maintains record of subscribed observers

e.g. a click in the Ul

= observer
e /ncludes a function to respond to subject notifications
e e.g. a handler for the click

Design Patterns - Observer - Example

// constructor for subject
function Subject () {
// keep track of observers
this.observers = [];

// add subscribe to constructor prototype
Subject.prototype.subscribe = function(fn) {
this.observers.push(fn);

}s

// add unsubscribe to constructor prototype

Subject.prototype.unsubscribe = function(fn) {
/7.

s

// add broadcast to constructor prototype
Subject.prototype.broadcast = function(status) {
// each subscriber function called in response to state change...
this.observers.forEach((subscriber) => subscriber(status));

}s

// instantiate subject object
const domSubject = new Subject();

// subscribe & define function to call when broadcast message is sent
domSubject.subscribe((status) => {
// check dom Load

let domCheck = status === true ? “dom loaded = ${status} : “dom still loading...

// log dom check
console.log(domCheck)

s

document.addEventListener('DOMContentLoaded’, () => domSubject.broadcast(true));

3

Design Patterns - Observer - Example

= Demo - Observer - Broadcast, Subscribe, & Unsubscribe

http://linode4.cs.luc.edu/teaching/cs/demos/422/observer/basic1/

Design Patterns - Pub/Sub - intro

= variation of standard observerpattern is publication and
subscription
o commonly known as PubSub pattern

= popular usage in JavaScript
= PubSub pattern publishes a fopic or event channel

m publication acts as a medliatoror event system between
e subscriber objects wishing to receive notifications
e and publisher object announcing an event

= easy to define specific events with event system
= events may then pass custom arguments to a subscriber

= trying to avoid potential dependencies between objects
e subscriber objects and the publisher object

Design Patterns - Pub/Sub - abstraction

= inherent to this pattern is the simple abstraction of responsibility

= publishers are unaware of nature or type of subscribers for
messages

= subscribers are unaware of the specifics for a given publisher

= subscribers simply identify their interest in a given topic or event
e then receive notifications of updates for a given subscribed channel

= primary difference with observerpattern
» PubSub abstracts the role of the subscriber

m subscribersimply needs to handle data broadcasts by a publisher

= creating an abstracted event system between objects
e abstraction of concerns between publisher and subscriber

Image - Publish/Subscribe Pattern

publish topic/event

| topic/event |

channel

subscribe

PubSub Pattern

Design Patterns - Pub/Sub - benefits

m observerand PubSub patterns help developers
o Detter understanding of relationships within an app’s logic and structure

= need to identify aspects of our app that contain direct relationships

= many direct relationships may be replaced with patterns
e Subjects and observers
e publishers and observers

= tightly coupled code can quickly create issues
e maintenance, scale, modification, clarity of code and logic...

e semmingly minor changes may often create a cascade or waterfall effect
in code

= a known side effect of tightly couple code
e frequent need to mock usage &c. in testing
e fime consuming and error prone as app scales...

= PubSub helps create smaller, loosely coupled blocks
e helps improve management of an app
e promotes code reuse

Design Patterns - Pub/Sub - basic example - part 1 -
event system

// constructor for pubsub object
function PubSub () {
this.pubsub = {};

// publish - expects topic/event & data to send
PubSub.prototype.publish = function (topic, data) {
// check topic exists
if (!this.pubsub[topic]){
console.log(publish - no topic...”);
return false;
}
// Loop through pubsub for specified topic - call subscriber functions...
this.pubsub[topic].forEach(function(subscriber) {
subscriber(data || {});
1)
}s

// subscribe - expects topic/event & function to call for publish notification
PubSub.prototype.subscribe = function (topic, fn) {
// check topic exists
if (!this.pubsub[topic]) {
// create topic
this.pubsub[topic] = [];
console.log(pubsub topic initialised...);
}
else {
// Llog output for existing topic match
console.log(topic already initialised...’);
}
// push subscriber function to specified topic
this.pubsub[topic].push(fn);
}s

Design Patterns - Pub/Sub - basic example - part 2 -
usage

// basic log output
var logger = data => { console.log(~logged: ${data}”); };

// test function for subscriber
var domUpdater = function (data) {
document.getElementById(' 'output').innerHTML = data;

// instantiate object for PubSub
const pubSub = new PubSub();

// subscriber tests

pubSub.subscribe('test_topic', logger);
pubSub.subscribe('test_topic2', domUpdater);
pubSub.subscribe('test_topic', logger);

// publisher tests

pubSub.publish('test_topic', 'hello subscribers of test topic...');
pubSub.publish('test_topic2', 'update notification for test topic2...');

= Demo - Pub/Sub

http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/

JavaScript - Proxy

intro

= Use a proxyto control access to another object
e g surrogate relationship between the proxy and the object

= proxy may be considered akin to a generalised gefterand setter

= whilst getters and setters may control access to a single object

property
e a proxy enables generic handling of interactions

= interactions may even include method calls relative to an object

= We may use a proxy where we might otherwise use a getter and a
setter

= proxy is considered broader and more powerful in its potential
implementation and usage

= e.g.
e a proxy may be used to add profiling support to an object
* measure performance
e autopopulate code properties

JavaScript - Proxy

creating a proxy - part 1

= to create a proxy in JavaScript
e yse the default, built-in Proxy constructor

// plain object
const planet = {
name: ['mercury'],

codes: {
iau: 'Me’,
unicode: 'U+263F'
}

}s

// proxy for passed target object - target = planet
const planetDetails = new Proxy(planet, {
get: (target, key) => {
return key in target ? target[key] :'planet does not exist...';
}s
set: (target, key, value) => {
key in target ? target[key].push(value) : 'key not found...';
}
3

// checRk proxy access to target property
console.log(planetDetails.name);

// check proxy set against target property
// target = planet, key = name, value = earth

planetDetails.name = 'earth';

console.log(planetDetails.name);

JavaScript - Proxy

creating a proxy - part 2

= in the previous example

e we may access the object and its properties directly
e but the proxy gives us extra utility

= e.g for the getter and setter
* we may check keys, values, &c.
e control how the object is updated
e we may also add basic logging, if necessary...

m after defining the initial plain object, planet
* we may then wrap it using the Proxy constructor

= current proxy includes a getter and setter method
e contains checks for required key in the original object

= also choose how we would like to compute values, log usage and
return &c.

JavaScript - Proxy

proxy traps

= in the previous example
» we added a get and set trap for defined target object, plLanet

= there are other traps we may use with a Proxy

= eqg.

e apply - activated for a function call
o e.g. measuring performance

e construct - activated fornew keyword

e enumerate - activated for for-1in statements

e getPrototypeOf - activated for getting prototype value
e setPrototypeOf - activated for setting prototype value

= these traps are in addition to existing get and set traps
= there are also traps that we cannot override using a proxy

= e.g.
e equality operators - == and === and not equivalents
e instanceof andtypeof

JavaScript - Proxy

logging with proxies
= use logging in development as a convenient tool for debugging
and checking code

= output checks, and add debugging statements to various points
within our code

= quickly start to add many such logging statements to our code

= better option
e considering abstraction and reuse of code
e /s fo use a proxy for such logging

JavaScript - Proxy

custom proxy for logging - part 1

= to improve our code reuse and abstraction
e we may define a proxy for logging within an app.

= e.g.
e define a custom function, which accepts a target object
e returns a new Proxy object with a getter and setter method

// logging with proxy - get and set traps defined
function logger(target) {
return new Proxy(target, {
get: (target, property) => {
console.log(property read - ${property});
return target[property];
}J
set: (target, property, value) => {
console.log(value '${value}' added to ${property});
target[property] = value;
}
1)
}

= this is a custom logger

o wraps passed target object in a proxy with defined getter and setter
methods

JavaScript - Proxy

custom proxy for logging - part 2

= we may then use this custom function as follows

// test object
let planet = {
name: 'mercury’

}s

// new planet object with proxy
planetLog = logger(planet);

// test getting - value for property returned by getter in logger() method. ..
console.log('default get = ', planetLog.name);

// test setting - value for property set against object
planet.code = 'Me';

= in this example
» we define the initial object
e then create a new object with a proxy wrapper

= this proxy includes the necessary logger
o set for both the setter and getter methods

= as we read a property
o the get method will log access and return the requested data

= as we set data
e we log this update, and then update the target

JavaScript - Proxy

custom proxy for measuring performance - part 1

= another appropriate use of a Proxy is to test performance for a
given function

= we may wrap a function with a Proxy, and then apply a trap

= this trap may include a simple timer
e orperhaps a detailed series of tests for the pass function

= e.g.
e the following function simply loops through a passed counter
e oulputs a series of characters for each iteration

// FN: test Loop to output to terminal
function loopOutput(counter, marker = '-') {
if (!counter) {
return false;
}
// Lloop through passed counter - check number for even...
for (i = ©; i <= counter; i++) {
// check for even counter value

if (i % 2 === 0) {
process.stdout.write('+");
} else {

// console.log(marker);
process.stdout.write(marker);
}
}

console.log('\n");
return true;

JavaScript - Proxy

custom proxy for measuring performance - part 2

= we may then wrap this function inside a Proxy
e adding a simple timer for the duration of the loop

// wrap function inside custom Proxy
loopTest = new Proxy(loopOutput, {
// apply simple timer to Loop function
apply: (target, thisArg, args) => {
console.time("loopTest");
/* invokes target function - thisArg defines the “this™ value
* i1f no “thisArg, undefined will be used instead...
* thisArg = value to use as “this™ when executing a callback
* args passed to target function LoopOutput
*/
const result = target.apply(thisArg, args);
console.timeEnd("loopTest");
return result;
}
1

= apply property trap means function value will be executed each
time loopOutput function is called

= handler will now be executed on function invocation for loopTest

JavaScript - Proxy

custom proxy for measuring performance - part 3

= we may then execute this function with its Proxy

// call function with counter value and custom marker...
loopTest(75, '-');

= markers are output to the terminal
e /ncludes a record of the loop’s performance in milliseconds

= benefit of this approach
* we do not need to modify the original function, LoopOutput
e the return, logic, computation &c. will all remain the same

= customisation in this example does not affect the passed function
e performance checking using the apply trap

= loopOutput function is now routed through the custom proxy
each time it is executed

JavaScript - Proxy

custom proxy for property autopopulate

= 3 proxy may also be used to autopopulate properties

= eg.
» we might need to model a directory structure for a file save
o will require verification of a defined file path

e or creation of directories to ensure a path may be completed
successtully

= |atter option may be achieved using a custom proxy
e create missing directories in a defined path structure

= eg.

// EN: recursive check for dir path and file...
function Directory() {
return new Proxy({}, {
get: (target, property) => {
console.log(reading property...${property});
// check if property already exists
if (!(property in target)) {
// if not - simply add a new directory to target
target[property] = new Directory();
}
// otherwise return property as is from target
// - write method not implemented for actual directory...
return target[property];

}
1)
}

// create new Proxy for function
const rootDir = new Directory();

try {
// check properties relative to root dir...

rootDir.testDir.test2Dir.testFile = "test.md";
console.log('exception not raised...');
} catch (event) {
// error handling for null exception should be OK due to custom proxy...

console.log(exception raised...${event});

JavaScript - Proxy

Reflect a proxy - intro

= ESG6 introduced a complement to Proxy usage
* g new built-in object, Reflect

= Proxy traps are mapped one-to-one in the Reflect API

= allows an easy combination of Proxy and Reflect usage
= e.g. for each trap there is a matching reflect method

JavaScript - Proxy

Reflect a proxy - get trap

m e.g.use Reflect.get to define default behaviour for a Proxy
getter.

const handler = {
get(target, key) {
if (key.startswith('_")) {
throw new Error(Property "${ key }" is inaccessible.’)

}
return Reflect.get(target, key)

}

const target = {}
const proxy = new Proxy(target, handler)
proxy._secret

= in this example, now unable to access the _secret property

= obvious benefit of this Reflect usage is the abstraction of get
usage
e from Proxy getter to a default, re-usable Reflect get method

= use the Proxy getter
e e.g. o check against data, type &c. in the target
o then call the Reflect get method if successful

= a useful option for restricting access to certain properties through
a Proxy

= expose the Proxy instead of the underlying object
» Selting access privileges according to requirements

= if successful, a request will then be handled by the Reflect API
method

= access must now go through the Proxy
e and meet its rules and requirements

JavaScript - Proxy

Reflect a proxy - false return

= returning an error may still be an indication that the _secret
property exists

= alternative is to return an explicit false boolean value for
requested hidden property

const handler = {
get(target, key) {
if (key.startsWith('_")) {
return false;

}
return Reflect.get(target, key)

}s

const library = {

archive : 'waldzell',

curator : 'knechts',

_secret : true
}s
const proxy = new Proxy(library, handler);
console.log(secret = ${proxy._secret});
console.log(archive = ${proxy.archive});

= a request for underscore value names may still be checked using

// _secret is not a private property in object -
console.log(proxy.hasOwnProperty('_secret'))

m ynderscore property names are still not private
e remain visible to specific property checks

JavaScript - Proxy

Reflect a proxy - set trap - part 1

we may also apply reflection to set traps

reflected set method defines behaviour for a setter on a given
Proxy object

equivalent to the default behaviour for the proxy
e.g.

set(target, key, value) {
return Reflect.set(target, key, value)
}

= also add various checks for the passed key...

JavaScript - Proxy

Reflect a proxy - set trap - part 2

= now update our previous example to include a set trap with Proxy
support

const handler = {
get(target, key) {
if (key.startswith('_")) {
// return false to show prop doesn't exist...
return false;
}
return Reflect.get(target, key)
}s
set(target, key, value) {
return Reflect.set(target, key, value);
}
}s

= then test property access using the get and set traps

const library = {};

const proxy = new Proxy(library, handler);
proxy.archive = 'mariafels’;

proxy._secret = true;

JavaScript - Proxy

Reflect a proxy - defaults and checks

= as we use the Reflect object as the default for traps
» we may add checks, updates &c. to the Proxy trap itself

= e.g. we might add a conditional check to the Proxy
e then pass a successful update or query to the Reflect method

= default Reflect method allows abstraction for traps from the Proxy

= e.g. we might update each trap with a call to the following
conditional check

function keyCheck(key, action) {
if (key.startswith('_")) {
throw new Error(${action} action is not permitted on '${ key }'")

}

= function is called in each trap before continuing to the Reflect
method for get or set

JavaScript - Proxy

proxy wrapper - part 1

= t0 ensure we restrict access to a target object to the defined
proxy and reflect traps
e need fo wrap the target itself in a Proxy

= target object may have been accessed directly in certain contexts
e might be beneficial for an admin mode and access

= to restrict access

o wrap such objects in the Proxy to restrict access to the defined traps and
handlers

JavaScript - Proxy

proxy wrapper - part 2

= e.g. we can modify our previous example for get and set traps

function proxyWrapper() {
const target = {};
const handler = {
get(target, key) {
if (key.startsWith('_")) {
// return false to show prop doesn't exist...
return false;

}
return Reflect.get(target, key)

}s
set(target, key, value) {
return Reflect.set(target, key, value);

}
};

return new Proxy(target, handler);

JavaScript - Proxy

proxy wrapper - part 3
= target may now be accessed and managed using an instantiated
proxy

const proxiedObject = proxyWrapper();

// set prop & value on target using proxy set trap
proxiedObject.archive = 'waldzell';

// target accessible using proxy get trap

console.log(target archive = ${proxiedObject.archive}”);

= target may not be accessed directly using standard property
access

// target not directly accessible
console.log(target = ${target});

JavaScript - Proxy

proxy wrapper - pass object to wrapper

= we may modify this wrapper to also accept an existing object
e may then be returned wrapped in a Proxy

= eqg.

const archive = {
name: ‘'waldzell’

}

const proxiedArchive = proxyWrapper(archive);

JavaScript - Proxy

proxy wrapper - check object - part 1

= add a further check to ensure we always have a target object to
work with..
e regardless of passed argument value

= e.g. add a check to the proxyWrapper function to ensure target is
always an object

// check object & return empty object if necessary...
function checkTarget(original) {
// check for existing target object
if (original.typeof !== 'object' || original === undefined) {
console.log('not object..."');
const target = {};
return target;
} else {
const target = original;
return target;

JavaScript - Proxy

proxy wrapper - check object - part 2

= if we pass a string instead of a target object
e Wwe can now create a proxy wrapper with an emply object

const proxiedArchive = proxyWrapper('archives');
// set prop & value on target using proxy set trap
proxiedArchive.admin = 'knechts';
proxiedArchive._secret = '1235813';

= properties for admin and _secret may now be set against an
empty object
* due fo the passed archives string

= we can call this function at the top of the proxyWrapper function

function proxyWrapper(original) {
// check target for proxy wrapper - original must be object
const target = checkTarget(original);

JavaScript - Proxy

proxy wrapper - update property access check

= also abstract initial check for property access using a defined
character delimiter

= eqg.

// check property access using defined char delimiter
function checkDelimiter(key, char) {
// check Rey relative to specified char delimiter
if (key.startsWith(char)) {
// return false to show prop not available
return true;

= simply check defined delimiter character relative to passed
property key
» may then be called in the proxyWrapper function

if (checkDelimiter(key, '_')){
return false;

}

JavaScript - Proxy

proxy wrapper - restricting access

= in the previous examples

» we define the target object both inside and outside the proxyWrapper
function

= both may be effective options for restricting object access
depending upon context

= internal object declaration for target restricts full access to the
Proxy object

= any traps for the object will only be accessible using the Proxy
object

= consumer must use the instantiated Proxy object to read, write,
query &c.

= external target object may still be useful after it has been
wrapped by a Proxy object

= restricted access is controlled by only exposing the target as a
Proxy object

= e.g. if we exposed the target as an access point for a pubic API
e proxy object will be exposed and not the original target object

JavaScript - Proxy

proxy and schema validation

= objects may be defined for a specific purpose or context
e requires control over stored properties and values

= validation allows us define the structure of an object
e e.g. its properties, types, permitted values &c.

= we may use a third party module or custom function
e may return an error for invalid input and data...

= still need to ensure that the object storing the input data is
restricted
e e.g. to authorised access both internal and external to the app

= another option is to use a Proxy with validation of the object

e proxy object may be used to provide access to the model object for
validation

= another benefit of a proxy with validation is the separation of
concerns
» dala object remains separate from the validation

= consumer never accesses the input object directly
e given a proxy object with validation checks and balances

= original input object remains a plain object due to nature of Proxy
object usage

= defined proxy handlers for validation &c. may also be referenced
and reused
e reuse across multiple Proxies...

JavaScript - Proxy

proxy and validator - part 1

= create an initial validator

e using a Proxy, a map, and defined handlers for required object
properties

= e.g. as a property is set through a proxy object
» JIs key may be checked against the map
o [fthere is a rule for the key, its handler value will be executed
o handler executed to check that the property is valid

// MAP - validation rules for properties
const validationMap = new Map();

// TRAPS - define traps for proxy
const validator = {
// set trap
set(target, key, value) {
// check map for matching handler
if (validationMap.has(key)) {

// return handler function if available...pass value as parameter
return validationMap.get(key)(value);

}

// else - default reflect set method for proxy
return Reflect.set(target, key, value);

}s

JavaScript - Proxy

proxy and validator - part 2

= value may be passed as a parameter to the handler function
e Sstored in the map for the requested key
e function may include a validation, check &c.

// RULES - define executable rules for permitted object properties
// e.g. log, update state, get state, broadcast, subscribe...
// e.g. sample validation for text to log
function validateLog(text) {
if (typeof text === 'string') {
console.log(logger = ${text});
} else {
throw new TypeError(” logger requires text input...”);

}

JavaScript - Proxy

proxy and validator - part 3

= we may then use this proxy and map as follows

// set Rey and handler function in map
validationMap.set('logger', validatelLog);

// empty object to wrap with proxy

const process = {};

// instantiate proxy object

const proxyProcess = new Proxy(process, validator);

// string set using handler for Logger
proxyProcess.logger = 'test string = hello proxy...';
// number will not be set - fails validation
proxyProcess.logger = 96;

Demos

= Design Patterns
e Observer - Broadcast, Subscribe, & Unsubscribe
e Pub/Sub

= JavaScript - Prototype
e basic protolype
e basic set protolype
e basic prototype object
e basic prototype object properties
e basic prototype dynamic
e basic constructor check
e /nheritance with prototype
e /nheritance with protolype - updated
e configure object properties

= JavaScript - ES Class
o basic ES Class
e basic Prototype equivalent

http://linode4.cs.luc.edu/teaching/cs/demos/422/observer/basic1/
http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-chain/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance-props/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-dynamic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-check-constructor/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/object-properties/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-class/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-equivalent/

Resources

= Design Patterns
o Observer - Wikipedia
o Pub/Sub Messaging - AWS
o Pub/Sub - Wikipedia

= JavaScript - Prototype
o MDN - Object Prototypes
o MDN - Inheritance and the prototype chain

= JavaScript - ES Class
e MDN - Classes

= JavaScript - Proxy
o MDN - Proxy
o MDN - Meta Programming

= Project tools
e Grunt JavaScript Task Runner
o Webpack Asset Bundler

https://en.wikipedia.org/wiki/Observer_pattern
https://aws.amazon.com/pub-sub-messaging/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Meta_programming
https://gruntjs.com/
https://webpack.js.org/

