
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 13

Dr Nick Hayward

Systems Management - Build Tools & Project
Development

Extra notes

Systems
Environments & Distributions

Build first - overview and usage

Grunt
basics

integrate with project outline and development

integrate with project release

Webpack
setup for local project

basic usage

assets for local project

…

JavaScript - Prototype

intro

along with the following traits of JS (ES6 …),
functions as first-class objects

versatile and useful structure of functions with closures

combine generator functions with promises to help manage async code

async & await…

prototype object may be used to delegate the search for a
particular property

a prototype is a useful and convenient option for defining
properties and functionality
accessible to other objects

a prototype is a useful option for replicating many concepts in
traditional object oriented programming

JavaScript - Prototype

understanding prototypes

in JS, we may create objects, e.g. using object-literal notation
a simple value for the first property

a function assigned to the second property

another object assigned to the third object

as a dynamic language, JS will also allow us to
modify these properties

delete any not required

or simply add a new one as necessary

this dynamic nature may also completely change the properties in
a given object

this issue is often solved in traditional object-oriented languages
using inheritance

in JS, we can use prototype to implement inheritance

let testObject = {
 property1: 1,
 prooerty2: function() {},
 property3: {}
}

JavaScript - Prototype

basic idea of prototypes

every object can have a reference to its prototype

a delegate object with properties - default for child objects

JS will initially search the onject for a property
then, search the prototype

i.e. prototype is a fall back object to search for a given property &c.

in the above example, we define two objects
properties may be called with standard object notation

can be modified and mutated as standard

use setPrototypeOf() to set and update object’s prototype

e.g. object1 as object to update
object2 as the object to set as prototype

if requested property is not available on object1
JS will search defined prototype…

author available as property of prototype for object1
demo - basic prototype

const object1 = { title: 'the glass bead game' };
const object2 = { author: 'herman hesse' };

console.log(object1.title);

Object.setPrototypeOf(object1, object2);

console.log(object1.author);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype/

JavaScript - Prototype

prototype inheritance

Prototypes, and their properties, can also be inherited
creates a chain of inheritance…

e.g.

object1 has access to the prototype of its parent, object2
a property search against object1 will now include its own
prototype, object2
and its prototype as well, object3

output for object1.genre will return the value stored in the
property on object3
demo - basic set prototype

const object1 = { title: 'the glass bead game' };
const object2 = { author: 'herman hesse' };
const object3 = { genre: 'fiction' };

console.log(object1.title);

Object.setPrototypeOf(object1, object2);
Object.setPrototypeOf(object2, object3);

console.log(object1.author);
console.log(`genre from prototype chain = ${object1.genre}`); // use template literal to

output...

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-chain/

JavaScript - Prototype

object constructor & prototypes

object-oriented languages, such as Java and C++, include a class
constructor
provides known encapsulation and structuring

constructor is initialising an object to a known initial state…

i.e. consolidate a set of properties and methods for a class of
objects in one place

JS offers such a mechanism, although in a slightly different form
to Java, C++ &c.

JS still uses the new operator to instantiate new objects via
constructors
JS does not include a true class definition comparable to Java &c.

ES6 class is syntactic sugar for the prototype…

new operator in JS is applied to a constructor function
this triggers the creation of a new object

JavaScript - Prototype

prototype object

in JS, every function includes their own prototype object
set automatically as the prototype of any created objects

e.g.

likewise, we may set a default method on an instantiated object’s
prototype

demo - basic prototype object

//constructor for object
function LibraryRecord() {
 //set default value on prototype
 LibraryRecord.prototype.library = 'castalia';
}

const bookRecord = new LibraryRecord();

console.log(bookRecord.library);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance/

JavaScript - Prototype

instance properties

as JS searches an object for properties, values or methods
instance properties will be searched before trying the prototype

a known order of precedence will work.

e.g.

this refers directly to the newly created object
properties in constructor created directly on instantiated object

e.g. instance of LibraryRecord()

search for library property against object
do not need to search against prototype for this example

known side-effect
instantiate multiple objects with this constructor

each object gets its own copy of the constructor’s properties & access to
same prototype

may end up with multiple copies of same properties in memory

if replication is required or likely
more efficient to store properties & methods against the prototype

demo - basic prototype object properties

//constructor for object
function LibraryRecord() {
 // set property on instance of object
 this.library = 'waldzell';

 //set default value on prototype
 LibraryRecord.prototype.library = 'castalia';
}

const bookRecord = new LibraryRecord();

console.log(bookRecord.library);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance-props/

JavaScript - Prototype

side effects of JS dynamic nature

JS is a dynamic language
properties can be added, removed, modified…

dynamic nature is true for prototypes
function prototypes

object prototypes

//constructor for object
function LibraryRecord() {
 // set property on instance of object
 this.library = 'waldzell';
}

// create instance of LibraryRecord - call constructor with `new` operator
const bookRecord1 = new LibraryRecord();

// check output of value for library property from constructor
console.log(`this library = ${bookRecord1.library}`);

// add method to prototype after object created
LibraryRecord.prototype.updateLibrary = function() {
 return this.retreat = 'mariafels';
};

// check prototype updated with new method
console.log(`this retreat = ${bookRecord1.updateLibrary()}`);

// then overwrite prototype - constructor for existing object unaffected...
LibraryRecord.prototype = {
 archive: 'mariafels',
 order: 'benedictine'
};

// create instance object of LibraryRecord...with updated prototype
const bookRecord2 = new LibraryRecord();

// check output for second instance object
console.log(`updated archive = ${bookRecord2.archive} and order = ${bookRecord2.order}`);
// check output for second instance object - library
console.log(`second instance object - library = ${bookRecord2.library}`);

demo - basic prototype dynamic

// check if prototype updated for first instance object - NO
console.log(`first instance object = ${bookRecord1.order}`);
// manual update to prototype for first instance object still available
console.log(`this retreat2 = ${bookRecord1.updateLibrary()}`);

// check prototype has been fully overwritten - e.g. `updateLibrary()` no longer available on
prototype for new instance object

try {
// updates to original prototype are overridden - error is returned for second instantiated

object...
console.log(`this retreat = ${bookRecord2.updateLibrary()}`);
 } catch(error) {
 console.log(`modified prototype not available for new object...\n ${error}`);
 }

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-dynamic/

JavaScript - Prototype

object typing via constructors

check function used as a constructor to instantiate an object
using constructor property

demo - basic constructor check

//constructor for object
function LibraryRecord() {
 //set default value on prototype
 LibraryRecord.prototype.library = 'castalia';
}

// create instance object for libraryRecord
const bookRecord = new LibraryRecord();

// output constructor for instance object
console.log(`constructor = ${bookRecord.constructor}`);

// check if function was constructor (use ternary conditional)
const check = bookRecord.constructor === LibraryRecord ? true : false;
// output result of check
console.log(check);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-check-constructor/

JavaScript - Prototype

instantiate a new object using a constructor reference

use a constructor to create a new instance object

also use constructor() of new object to create another object

second object is still an object of the original constructor

//constructor for object
function LibraryRecord() {
 //set default value on prototype
 LibraryRecord.prototype.library = 'castalia';
}

const bookRecord = new LibraryRecord();
const bookRecord2 = new bookRecord.constructor();

JavaScript - Prototype

achieving inheritance

Inheritance enables re-use of an object’s properties by another
object

helps us efficiently avoid repetition of code and logic
improving reuse and data across an application

in JS, a prototype chain to ensure inheritance works beyond
simply copying prototype properties
e.g. a book in a corpus, a corpus in an archive, an archive in a library…

JavaScript - Prototype

inheritance with prototypes - part 1

inheritance in JS
create a prototype chain using an instance of an object as prototype for
another object

e.g.

this pattern works as a prototype chain for inheritance
prototype of SubClass instance as an instance of SuperClass
prototype will have all the properties of SuperClass
SuperClass may also have properties from its superclass…

prototype chain created of expected inheritance

SubClass.prototype = new SuperClass()

JavaScript - Prototype

inheritance with prototypes - part 2

e.g. inheritance achieved by setting prototype of Archive to
instance of Library object

//constructor for object
function Library() {
 // instance properties
 this.type = 'library';
 this.location = 'waldzell';
}

// constructor for Archive object
function Archive(){
 // instance property
 this.domain = 'gaming';
}

// update prototype to parent Libary - instance relative to parent & child
Archive.prototype = new Library();

// instantiate new Archive object
const archiveRecord = new Archive();

// check instance object - against constructor
if (archiveRecord instanceof Archive) {
 console.log(`archive domain = ${archiveRecord.domain}`);
}

// check instance of archiveRecord - instance of Library & Archive
if (archiveRecord instanceof Library) {
 // type property from Library
 console.log(`Library type = ${archiveRecord.type}`);
 // domain property from Archive
 console.log(`Archive domain = ${archiveRecord.domain}`);
}

JavaScript - Prototype

issues with overriding the constructor property

setting Library object as defined prototype for Archive
constructor

connection to Archive constructor lost - we may check
constructor

Library constructor will be returned
n.b. may become an issue - constructor property may be used to check
original function for instantiation

demo - inheritance with prototype

Archive.prototype = new Library();

// check constructor used for archiveRecord object
if (archiveRecord.constructor === Archive) {
 console.log('constructor found on Archive...');
} else {
 // Library constructor output - due to prototype
 console.log(`Archive constructor = ${archiveRecord.constructor}`);
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto/

JavaScript - Prototype

some benefits of overriding the constructor property

//constructor for object
function Library() {
 // instance properties
 this.type = 'library';
 this.location = 'waldzell';
}

// extend prototype
Library.prototype.addArchive = function(archive) {
 console.log(`archive added to library - ${archive}`);
 // add archive property to instantiate object
 this.archive = archive;
 // add property to Library prototype
 Library.prototype.administrator = 'knechts';
}

// constructor for Archive object
function Archive(){
 // instance property
 this.domain = 'gaming';
}

// update prototype to parent Libary - instance relative to parent & child
Archive.prototype = new Library();

// instantiate new Archive object
const archiveRecord = new Archive();
// call addArchive on Library prototype
archiveRecord.addArchive('mariafels');

// check instance object - against constructor
if (archiveRecord instanceof Archive) {
 console.log(`archive domain = ${archiveRecord.domain}`);
}

// check constructor used for archiveRecord object
if (archiveRecord.constructor === Archive) {
 console.log('constructor found on Archive...');
} else {
 console.log(`Archive constructor = ${archiveRecord.constructor}`);
 console.log(`Archive domain = ${archiveRecord.domain}`);
 console.log(`Archive = ${archiveRecord.archive}`);

demo - inheritance with prototype - updated

 console.log(`Archive admin = ${archiveRecord.administrator}`);
}

// check instance of archiveRecord - instance of Library & Archive
if (archiveRecord instanceof Library) {
 // type property from Library
 console.log(`Library type = ${archiveRecord.type}`);
 // domain property from Archive
 console.log(`Archive domain = ${archiveRecord.domain}`);
}

// instantiate another Archive object
const archiveRecord2 = new Archive();
// output instance object for second archive
console.log('Archive2 object = ', archiveRecord2);
// check if archiveRecord2 object has access to updated archive property...NO
console.log(`Archive2 = ${archiveRecord2.archive}`);
// check if archiveRecord2 object has access to updated adminstrator property...YES
console.log(`Archive2 administrator = ${archiveRecord2.administrator}`);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto2/

JavaScript - Prototype

configure object properties - part 1

each object property in JS is described with a property descriptor

use such descriptors to configure specific keys, e.g.

configurable - boolean setting
true = property’s descriptor may be changed and the property deleted

false = no changes &c.

enumerable - boolean setting
true = specified property will be visible in a for-in loop through object’s
properties

value - specifies value for property (default is undefined)

writable - boolean setting
true = the property value may be changed using an assignment

get - defines the getter function, called when we access the
property
n.b. can’t be defined with value and writable

set - defines the setter function, used whenever an assignment is
made to the property
n.b. can’t be defined with value and writable

e.g. create following property for an object

archive
will be configurable, enumerable, writable

with a value of private

get and set will currently be undefined

archive.type = 'private';

JavaScript - Prototype

configure object properties - part 2

to update or modify a property configuration use built-in
Object.defineProperty() method

this method takes an object, which may be used to
define or update the property

define or update the name of the property

define a property descriptor object

e.g.

// empty object
const archive = {};

// add properties to object
archive.name = "waldzell";
archive.type = "game";

// define property access, usage, &c.
Object.defineProperty(archive, "access", {
 configurable: false,
 enumerable: false,
 value: true,
 writable: true
});

// check access to new property
console.log(`${archive.access}, access property available on the object...`);

/*
* check we can't access new property in loop
* - for..in iterates over enumerable properties
*/
for (let property in archive) {
 // log enumerable
 console.log(`key = ${property}, value = ${archive[property]}`);
}

/*
* plain object values not iterable...
* - returns expected TyoeError - archive is not iterable

demo - configure object properties

*/
for (let value of archive) {
 // value not logged...
 console.log(value);
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/object-properties/

JavaScript - Prototype

using ES Classes

ES6 provides a new class keyword
enables object creation and aida in inheritance

it’s syntactic sugar for the prototype and instantiation of objects

e.g.

demo - basic ES Class

// class with constructor & methods
class Archive {
 constructor(name, admin) {
 this.name = name;
 this.admin = admin;
 }
 // class method
 static access() {
 return false;
 }
 // instance method
 administrator() {
 return this.admin;
 }
}

// instantiate archive object
const archive = new Archive('Waldzell', 'Knechts');

// check parameter usage with class
const nameCheck = archive.name === `Waldzell` ? archive.name : false;

// log archive name
console.log(`class archive name = ${nameCheck}`);
// call class method
console.log(Archive.access());
// call instance method
console.log(`archive administrator = ${archive.administrator()}`);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-class/

JavaScript - Prototype

ES classes as syntactic sugar

classes in ES6 are simply syntactic sugar for prototypes.

a prototype implementation of previous Archive class, and
usage… -not* e.g.

demo - basic Prototype equivalent

// constructor function
function Archive(name, admin) {
 this.name = name;
 this.admin = admin;

 // instance method
 this.administrator = function () {
 return this.admin;
 }

 // add property to constructor
 Archive.access = function() {
 return false;
 };
}

// instantiate object - pass arguments
const archive = new Archive('Waldzell', 'Knechts');

// check parameter usage with ternary conditional...
const nameCheck = archive.name === `Waldzell` ? archive.name : false;

// output name check...
console.log(`prototype archive name = ${nameCheck}`);
// call constructor only method
console.log(Archive.access());
// call instance method
console.log(`archive administrator = ${archive.administrator()}`);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-equivalent/

Project Outline - Setup & Usage

intro

consider task runners and build tools
e.g. Grunt, Webpack…

relative to build distributions and development environments

for a new project, begin by initialising a Git repository
initialise in the root directory

also add a .gitignore file to our local repository
define files and directories not monitored by Git’s version control

then initialise a new NodeJS based project using NPM

execute the following terminal command

answer initial npm init questions or use suggested defaults

package.json file created
default metadata may be updated as project develops

npm init

Project Outline - Setup & Usage

directory structure - part 1

basic project layout may follow a sample directory structure,

sample needs to be modified relative to a given project

build, temp, and testing will include files and generated content
from various build tasks

build and temp directories may be created and cleaned
automatically
as part of the build tasks

do not need to be created as part of the initial directory structure

.
|-- build
| |-- css
| |-- img
| |-- js
|-- src
| |-- assets
| |-- css
| |-- js
| |__ app.js
|-- temp
|-- testing
|__ index.html //applicable for client-side, webview apps &c.

Project Outline - Setup & Usage

directory structure - part 2

example structure adds index.html file to root of project
structure
e.g. for client-side and webview based development

structure includes build directories
may not add until build tasks for a release distribution

commonly include bundling, minification, uglifying, &c.

build directory will be part of a build task

also update our project’s .gitignore file

.DS_Store
node_modules/
*.log
build/
temp/

Project Outline - Setup & Usage

install and configure Grunt

start by installing and configuring Grunt for the above sample
project structure

install assumes a global scope for the NPM package grunt-cli
saves metadata to package.json for development builds only

to use Grunt with a project
add a config file, Gruntfile.js to the project’s root directory

includes initial exports for tasks and targets

we may then load and register the required tasks

npm install grunt --save-dev

Project Outline - Setup & Usage

Gruntfile.js - initial exports

Grunt config is again dependent on specifics of the project

we may add some common options
e.g. linting, build distributions, minification and bundling, uglifying, sprites
&c.

use of rollup will depend upon required support for modules
including ES modules within JavaScript apps

module.exports = function(grunt) {
 grunt.initConfig(
 {
 jshint: {
 all: ['src/**/*.js'],
 options: {
 'esversion': 6,
 'globalstrict': true,
 'devel': true,
 'browser': true
 }
 },
 rollup: {
 release: {
 options: {},
 files: {
 'temp/js/rolled.js': ['src/js/main.js'],
 },
 }
 },
 uglify: {
 release: {
 files: {
 'build/js/mini.js': 'temp/js/*.js'
 },
 }
 },
 sprite: {
 release: {
 src: 'src/assets/images/*',
 dest: 'build/img/icons.png',

 destCss: 'build/css/icons.css'
 }
 },
 clean: {
 folder: ['temp'],
 }
 }
);

};

Project Outline - Setup & Usage

Gruntfile.js - custom task

we may add custom tasks such as metadata generation,

we may add tasks for CSS &c. as we continue to develop the
project

buildMeta: {
 options: {
 file: './meta.md',
 developer: 'debug tester',
 build: 'debug'
 }
},

Project Outline - Setup & Usage

Gruntfile.js - use tasks - part 1

after defining the exports for tasks and targets,
we can load the required Grunt plugin modules

register the required tasks

…

we may run these registered tasks together
or separately relative to distribution and environment

e.g. load the plugins for the required tasks,

// linting, module bundling, minification, directory cleanup...
grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-rollup');
grunt.loadNpmTasks('grunt-contrib-uglify-es');
grunt.loadNpmTasks('grunt-spritesmith');
grunt.loadNpmTasks('grunt-contrib-clean');

Project Outline - Setup & Usage

Gruntfile.js - use tasks - part 2

plugins correspond to installed NPM packages for current project
e.g.

npm install grunt-contrib-jshint --save-dev
npm install grunt-rollup --save-dev
npm install grunt-contrib-uglify-es --save-dev
npm install grunt-spritesmith --save-dev
npm install grunt-contrib-clean --save-dev

Project Outline - Setup & Usage

Gruntfile.js - register custom task

we may then register a custom task for various targets in the
builds
e.g.

// custom task - build meta for default debug
grunt.registerTask('buildMeta', function() {
 console.log('debug build...');
 const options = this.options();
 metaBuilder(options);
});

//custom task - build meta for release
grunt.registerTask('buildMeta:release', function() {
 console.log('release build...');
 // define task options - incl. defaults
 const options = this.options({
 file: 'build/release_meta.md',
 developer: "spire & signpost",
 build: "release"
 });
 metaBuilder(options);
});

Project Outline - Setup & Usage

Gruntfile.js - register builds

then register some build tasks
tasks may combine the options from the config

provides the execution of staggered tasks for a single build call

e.g. a debug build may include
linting, custom metadata, and a clean task

we may also define a build process for staging or release

we may run and test Grunt for the current project
relative to project requirements, e.g. debug or release

or

// debug build tasks - default tasks during development...
grunt.registerTask('build:debug', ['jshint', 'buildMeta', 'clean']);

// build tasks with specific 'release' targets...
grunt.registerTask('build:release', ['jshint', 'rollup:release', 'uglify:release',

'sprite:release', 'buildMeta:release', 'clean']);

grunt build:debug

grunt build:release

Project Outline - Setup & Usage

development with environments

as we develop more complex apps
need to consider how we configure and use such build tools

e.g. with various environments
development

staging

production / release

we can define a debug or release distribution build
use with each of these environments

Project Outline - Setup & Usage

environment setup - development - part 1

app development will primarily focus on a debug distribution
provide tasks such as linting, testing, metadata, watch, &c.

becomes common distribution for active, ongoing development

also need to ensure environment variables are aggregated
allows the app to run as expected

stored in the same manner regardless of debug or release

difference is use of encryption
and the nature of the required environment configs

bundling with minification and uglifying
usually added to a project as part of release distribution

may serve little practical benefit for ongoing active development

Project Outline - Setup & Usage

environment setup - development - part 2

we may define a common structure for Node based apps as
follows

develop the app, including the app source code, in the src
directory

build our app in the debug directory
each time we need to check and debug usage

temporary build artifacts may be added to the temp directory
cleaned after each build workflow has been completed

e.g. each time we complete a call to build:debug
clean, where applicable, the build artifacts

we may also choose to combine debug and temp
a single temp directory

depending upon project requirements

.
|-- debug
|-- src
| |-- assets
| |-- js
|-- temp
|-- testing
|__ app.js

Project Outline - Setup & Usage

environment setup - development - part 3

for a client-side or mobile hybrid app
slightly modify this directory structure, e.g.

assets directory may include raw image files, icons, &c.

test builidng these image assets as sprites
added to the img directory during the build

also use image optimisation at this stage
e.g. test UI and UX performance

part of the debug distribution is the use of watch for live reloading
nodemon for Node.js based apps

also consider tasks to aggregate logging within the app’s code

may include explicit console.log() statements, and error
handling

.
|-- debug
| |-- css
| |-- img
| |-- js
|-- src
| |-- assets
| |-- css
| |-- js
| |__ app.js
|-- temp
|-- testing
|__ index.html

Project Outline - Setup & Usage

environment setup - development Grunt config - part 1

update our Grunt config
use a debug distribution in current development environment

e.g. add any required build options for debug
then integrate required environment config variables &c.

start with unencrypted JSON files

may contain defaults for options
e.g. current environment, server’s port number &c.

{
 "NODE_ENV": "development",
 "PORT": 3826
}

Project Outline - Setup & Usage

environment setup - development Grunt config - part 2

define some additional project directories
e.g. encrypted and decrypted config files

.
|-- env
| |-- defaults
| |-- private
| |-- secure

env/defaults contains the unencrypted defaults
as defined in defaults.json

env/private includes decrypted secure files

env/secure should be reserved for encrypted files
we may add to version control

env/private should not be commited to version control

a few different options for file encryption
e.g. RSA based public/private keys, GNU Privacy Guard (GPG, or
GnuPG)

further details in the extra notes
encryption, signatures, and verification of files

includes step by step examples for working with RSA

and extra layers of verification for a file with generated signatures

Project Outline - Setup & Usage

merging config sources

as a project develops, we may produce various sources of
configuration

may include sources such as
JSON files

JavaScript objects

environment variables

process arguments

…

to help merge such disparate config sources
add an NPM module such as nconf
nconf

or we may simply load environment variables
e.g. from a project’s .env file using the package dotenv
dotenv

https://www.npmjs.com/package/nconf
https://www.npmjs.com/package/dotenv

Project Outline - Setup & Usage

sample waterfall with nconf

with nconf we may bundle various config stages for a project
e.g.

getting config variables and settings from defined stores in defined
cascading order

order is prioritised
allowing overrides and defaults at various stages of the cascade

e.g. if a value is given in the command arguments, argv

const nconf = require('nconf');
nconf.argv();
nconf.env();
nconf.file('dev', 'development.json');
module.exports = nconf.get.bind(nconf);

Project Outline - Setup & Usage

continuous development

continuous development (CD)
allows a developer to work on app code &c. without many customary
interruptions

e.g. server reboots, code refreshes, debugging, linting &c.

CD often reduces repetitive tasks in a development flow
helping to automate processes and development

build process may be automated and run whenever a pertinent
change is detected

Project Outline - Setup & Usage

continuous development - add a watch task - part 1

add a watch task to a build flow
allow a rebuild each time a given file is edited and then saved

e.g. for Grunt, we may add the plugin module grunt-contrib-
watch

and update the Grunt config

plugin watches file system for code changes in a tracked project
then runs the affected tasks as required

basic watch example might include the following

continuously checks src directory for JavaScript file change or
addition
then runs the jshint:client task

this type of watch provides a broad approach to managing project
changes

npm install grunt-contrib-watch --save-dev

grunt.loadNpmTasks('grunt-contrib-watch');

watch: {
 js: {
 tasks: ['jshint:client'],
 files: ['src/**/*.js']
 }
}

Project Outline - Setup & Usage

continuous development - add a watch task - part 2

then include additional targets relative to project requirements
e.g. add further JS specific targets, CSS, sprites &c.

we may also define separate build tasks to use watch
e.g.

which we may call as follows,

executes the tasks for build:debug
then starts watching the specified targets

// dev tasks - combine debug with watch
grunt.registerTask('dev', ['build:debug', 'watch']);

grunt dev

Project Outline - Setup & Usage

continuous development - live reload - part 1

also use watch to add support for live reloads

built-in support with the grunt-contrib-watch plugin

reload option uses web sockets

originally designed for browser based real-time communication and
synchronisation

LiveReload option listens for changes to monitored files,
directories &c.
then reload and refresh the current active app

support for the LiveReload task may added as follows

provides a live reload server - usually runs at localhost:35729
object includes a property to confirm livereload
then defines files to watch to initiate a reload

e.g. in this example
watching build directory, its children, then the root directory for any
HTML files

includes any changes to default index.html file

n.b. this server does not actually reload the app for us
need to use a server to host the app

host server is monitoring this livereload server

livereload: {
 options: {
 livereload: true
 },
 files: ['build/**/*', './*.html'],
},

Project Outline - Setup & Usage

continuous development - live reload - part 2

livereload also provides a setup script for the test app

two common options for use
add a link to this script in our project’s index.html file

or
use a Grunt plugin, grunt-contrib-connect

grunt-contrib-connect
automatically injects script in our app’s code

preferred option for ongoing development

install this plugin as follows

then update the Gruntfile.js config

<script src="http://localhost:35729/livereload.js"></script>

npm install grunt-contrib-connect --save-dev

connect: {
 server: {
 options: {
 port: 8080,
 base: '.',
 hostname: '*',
 protocol: 'http',
 livereload: true,
 }
 },
},

Project Outline - Setup & Usage

continuous development - live reload - part 3

need to update the required build tasks to use these plugins
e.g. add connect and livereload support to dev build task

then run this build task

-v flag outputs verbose messages
helps initially check everything is running as expected

// dev tasks - combine debug with watch, live server, and live reload
grunt.registerTask('dev', ['build:debug', 'connect', 'watch']);

grunt dev -v

Project Outline - Setup & Usage

add CSS support - part 1

app styles will, customarily, include a combination of options
e.g. CSS stylesheets and dynamic JavaScript based style properties

to work with CSS stylesheets, similar to JavaScript files
consider a Grunt task for minifying these files

we need to install the Grunt module, grunt-contrib-cssmin

then add the following to include this package in the
Gruntfile.js config

and update the build task for a release distribution

referencing the following task for cssmin

npm install grunt-contrib-cssmin --save-dev

grunt.loadNpmTasks('grunt-contrib-cssmin');

// build tasks with specific 'release' targets...
 grunt.registerTask('build:release', ['rollup:release', 'cssmin:release', 'uglify:release',

'buildMeta:release', 'clean']);

cssmin: {
 release: {
 options: {
 banner: '/* minified css file - basic-es-modules */'
 },
 files: {
 'build/css/mini.css': [
 'src/css/main.css',
]
 }
 }
},

Project Outline - Setup & Usage

add CSS support - part 2

with the minified CSS stylesheet built
add a link to this stylesheet in the index.html file

then update the watch task by adding the following for CSS

then run the usual Grunt build tasks
e.g. to minify the CSS stylesheets, and watch for any updates and
changes…

<!-- css styles - main -->
<link rel="stylesheet" href="./build/css/mini.css">

css: {
 files: ['src/**/*.css'],
 tasks: ['cssmin:release']
},

Project Outline - Setup & Usage

Watch update

current watch task includes support for CSS, JS, and HTML

includes checks for modifications
e.g. to any defined src directories for CSS and JS

monitors any HTML files in the app’s root directory

a working watch task is as follows

watch: {
 js: {
 files: ['src/**/*.js'],
 tasks: ['jshint:client', 'rollup:release', 'uglify:release']
 },
 css: {
 files: ['src/**/*.css'],
 tasks: ['cssmin:release']
 },
 html: {
 files: ['./*.html']
 },
 livereload: {
 options: {
 livereload: true
 },
 files: ['build/**/*', './*.html'],
 },
},

Design Patterns - Observer - intro

observer pattern is used to help define a one to many dependency
between objects

as subject (object) changes state
any dependent observers (object/s) are then notified automatically

and then may update accordingly

managing changes in state to keep app in sync

creating bindings that are event driven
instead of standard push/pull

standard usage for this pattern with bindings
one to many

one way

commonly event driven

Image - Observer Pattern

Observer Pattern

Design Patterns - Observer - notifications

observer pattern creates a model of event subscription with
notifications

benefit of this pattern
tends to promote loose coupling in component design and development

pattern is used a lot in JavaScript based applications
user events are a common example of this usage

pattern may also be referenced as Pub/Sub

there are differences between these patterns - be careful…

Design Patterns - Observer - Usage

The observer pattern includes two primary
objects,

subject

provides interface for observers to subscribe and unsubscribe

sends notifications to observers for changes in state

maintains record of subscribed observers

e.g. a click in the UI

observer

includes a function to respond to subject notifications

e.g. a handler for the click

Design Patterns - Observer - Example

// constructor for subject
function Subject () {
 // keep track of observers
 this.observers = [];
}

// add subscribe to constructor prototype
Subject.prototype.subscribe = function(fn) {
 this.observers.push(fn);
};

// add unsubscribe to constructor prototype
Subject.prototype.unsubscribe = function(fn) {
 // ...
};

// add broadcast to constructor prototype
Subject.prototype.broadcast = function(status) {
 // each subscriber function called in response to state change...
 this.observers.forEach((subscriber) => subscriber(status));
};

// instantiate subject object
const domSubject = new Subject();

// subscribe & define function to call when broadcast message is sent
domSubject.subscribe((status) => {
 // check dom load
 let domCheck = status === true ? `dom loaded = ${status}` : `dom still loading...`;
 // log dom check
 console.log(domCheck)
});

document.addEventListener('DOMContentLoaded', () => domSubject.broadcast(true));

Design Patterns - Observer - Example

Demo - Observer - Broadcast, Subscribe, & Unsubscribe

http://linode4.cs.luc.edu/teaching/cs/demos/422/observer/basic1/

Design Patterns - Pub/Sub - intro

variation of standard observer pattern is publication and

subscription

commonly known as PubSub pattern

popular usage in JavaScript

PubSub pattern publishes a topic or event channel

publication acts as a mediator or event system between
subscriber objects wishing to receive notifications

and publisher object announcing an event

easy to define specific events with event system

events may then pass custom arguments to a subscriber

trying to avoid potential dependencies between objects
subscriber objects and the publisher object

Design Patterns - Pub/Sub - abstraction

inherent to this pattern is the simple abstraction of responsibility

publishers are unaware of nature or type of subscribers for
messages

subscribers are unaware of the specifics for a given publisher

subscribers simply identify their interest in a given topic or event
then receive notifications of updates for a given subscribed channel

primary difference with observer pattern
PubSub abstracts the role of the subscriber

subscriber simply needs to handle data broadcasts by a publisher

creating an abstracted event system between objects
abstraction of concerns between publisher and subscriber

Image - Publish/Subscribe Pattern

PubSub Pattern

Design Patterns - Pub/Sub - benefits

observer and PubSub patterns help developers
better understanding of relationships within an app’s logic and structure

need to identify aspects of our app that contain direct relationships

many direct relationships may be replaced with patterns
subjects and observers

publishers and observers

tightly coupled code can quickly create issues
maintenance, scale, modification, clarity of code and logic…

semmingly minor changes may often create a cascade or waterfall effect
in code

a known side effect of tightly couple code
frequent need to mock usage &c. in testing

time consuming and error prone as app scales…

PubSub helps create smaller, loosely coupled blocks
helps improve management of an app

promotes code reuse

Design Patterns - Pub/Sub - basic example - part 1 -
event system

// constructor for pubsub object
function PubSub () {
 this.pubsub = {};
}

// publish - expects topic/event & data to send
PubSub.prototype.publish = function (topic, data) {
 // check topic exists
 if (!this.pubsub[topic]){
 console.log(`publish - no topic...`);
 return false;
 }
 // loop through pubsub for specified topic - call subscriber functions...
 this.pubsub[topic].forEach(function(subscriber) {
 subscriber(data || {});
 });
};

// subscribe - expects topic/event & function to call for publish notification
PubSub.prototype.subscribe = function (topic, fn) {
 // check topic exists
 if (!this.pubsub[topic]) {
 // create topic
 this.pubsub[topic] = [];
 console.log(`pubsub topic initialised...`);
 }
 else {
 // log output for existing topic match
 console.log(`topic already initialised...`);
 }
 // push subscriber function to specified topic
 this.pubsub[topic].push(fn);
};

Design Patterns - Pub/Sub - basic example - part 2 -
usage

Demo - Pub/Sub

// basic log output
var logger = data => { console.log(`logged: ${data}`); };

// test function for subscriber
var domUpdater = function (data) {
 document.getElementById('output').innerHTML = data;
}

// instantiate object for PubSub
const pubSub = new PubSub();

// subscriber tests
pubSub.subscribe('test_topic', logger);
pubSub.subscribe('test_topic2', domUpdater);
pubSub.subscribe('test_topic', logger);

// publisher tests
pubSub.publish('test_topic', 'hello subscribers of test topic...');
pubSub.publish('test_topic2', 'update notification for test topic2...');

http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/

JavaScript - Proxy

intro

use a proxy to control access to another object
a surrogate relationship between the proxy and the object

proxy may be considered akin to a generalised getter and setter

whilst getters and setters may control access to a single object
property
a proxy enables generic handling of interactions

interactions may even include method calls relative to an object

we may use a proxy where we might otherwise use a getter and a
setter

proxy is considered broader and more powerful in its potential
implementation and usage

e.g.
a proxy may be used to add profiling support to an object

measure performance

autopopulate code properties

…

JavaScript - Proxy

creating a proxy - part 1

to create a proxy in JavaScript
use the default, built-in Proxy constructor

// plain object
const planet = {
 name: ['mercury'],
 codes: {
 iau: 'Me',
 unicode: 'U+263F'
 }
};

// proxy for passed target object - target = planet
const planetDetails = new Proxy(planet, {
 get: (target, key) => {
 return key in target ? target[key] :'planet does not exist...';
 },
 set: (target, key, value) => {
 key in target ? target[key].push(value) : 'key not found...';
 }
});

// check proxy access to target property
console.log(planetDetails.name);

// check proxy set against target property
// target = planet, key = name, value = earth
planetDetails.name = 'earth';

console.log(planetDetails.name);

JavaScript - Proxy

creating a proxy - part 2

in the previous example
we may access the object and its properties directly

but the proxy gives us extra utility

e.g for the getter and setter
we may check keys, values, &c.

control how the object is updated

we may also add basic logging, if necessary…

after defining the initial plain object, planet
we may then wrap it using the Proxy constructor

current proxy includes a getter and setter method
contains checks for required key in the original object

also choose how we would like to compute values, log usage and
return &c.

JavaScript - Proxy

proxy traps

in the previous example
we added a get and set trap for defined target object, planet

there are other traps we may use with a Proxy

e.g.
apply - activated for a function call
e.g. measuring performance

construct - activated for new keyword

enumerate - activated for for-in statements

getPrototypeOf - activated for getting prototype value

setPrototypeOf - activated for setting prototype value

these traps are in addition to existing get and set traps

there are also traps that we cannot override using a proxy

e.g.
equality operators - == and === and not equivalents

instanceof and typeof

JavaScript - Proxy

logging with proxies

use logging in development as a convenient tool for debugging
and checking code

output checks, and add debugging statements to various points
within our code

quickly start to add many such logging statements to our code

better option
considering abstraction and reuse of code

is to use a proxy for such logging

JavaScript - Proxy

custom proxy for logging - part 1

to improve our code reuse and abstraction
we may define a proxy for logging within an app.

e.g.
define a custom function, which accepts a target object

returns a new Proxy object with a getter and setter method

this is a custom logger
wraps passed target object in a proxy with defined getter and setter
methods

// logging with proxy - get and set traps defined
function logger(target) {
 return new Proxy(target, {
 get: (target, property) => {
 console.log(`property read - ${property}`);
 return target[property];
 },
 set: (target, property, value) => {
 console.log(`value '${value}' added to ${property}`);
 target[property] = value;
 }
 });
}

JavaScript - Proxy

custom proxy for logging - part 2

we may then use this custom function as follows

in this example
we define the initial object

then create a new object with a proxy wrapper

this proxy includes the necessary logger
set for both the setter and getter methods

as we read a property
the get method will log access and return the requested data

as we set data
we log this update, and then update the target

// test object
let planet = {
 name: 'mercury'
};

// new planet object with proxy
planetLog = logger(planet);

// test getting - value for property returned by getter in logger() method...
console.log('default get = ', planetLog.name);

// test setting - value for property set against object
planet.code = 'Me';

JavaScript - Proxy

custom proxy for measuring performance - part 1

another appropriate use of a Proxy is to test performance for a
given function

we may wrap a function with a Proxy, and then apply a trap

this trap may include a simple timer
or perhaps a detailed series of tests for the pass function

e.g.
the following function simply loops through a passed counter

outputs a series of characters for each iteration

// FN: test loop to output to terminal
function loopOutput(counter, marker = '-') {
 if (!counter) {
 return false;
 }
 // loop through passed counter - check number for even...
 for (i = 0; i <= counter; i++) {
 // check for even counter value
 if (i % 2 === 0) {
 process.stdout.write('+');
 } else {
 // console.log(marker);
 process.stdout.write(marker);
 }
 }
 console.log('\n');
 return true;
}

JavaScript - Proxy

custom proxy for measuring performance - part 2

we may then wrap this function inside a Proxy
adding a simple timer for the duration of the loop

apply property trap means function value will be executed each
time loopOutput function is called

handler will now be executed on function invocation for loopTest

// wrap function inside custom Proxy
loopTest = new Proxy(loopOutput, {
 // apply simple timer to loop function
 apply: (target, thisArg, args) => {
 console.time("loopTest");
 /* invokes target function - thisArg defines the `this` value
 * if no `thisArg`, undefined will be used instead...
 * thisArg = value to use as `this` when executing a callback
 * args passed to target function loopOutput
 */
 const result = target.apply(thisArg, args);
 console.timeEnd("loopTest");
 return result;
 }
});

JavaScript - Proxy

custom proxy for measuring performance - part 3

we may then execute this function with its Proxy

markers are output to the terminal
includes a record of the loop’s performance in milliseconds

benefit of this approach
we do not need to modify the original function, loopOutput
the return, logic, computation &c. will all remain the same

customisation in this example does not affect the passed function
performance checking using the apply trap

loopOutput function is now routed through the custom proxy
each time it is executed

// call function with counter value and custom marker...
loopTest(75, '-');

JavaScript - Proxy

custom proxy for property autopopulate

a proxy may also be used to autopopulate properties

e.g.
we might need to model a directory structure for a file save

will require verification of a defined file path

or creation of directories to ensure a path may be completed
successfully

latter option may be achieved using a custom proxy
create missing directories in a defined path structure

e.g.

// FN: recursive check for dir path and file...
function Directory() {
 return new Proxy({}, {
 get: (target, property) => {
 console.log(`reading property...${property}`);
 // check if property already exists
 if (!(property in target)) {
 // if not - simply add a new directory to target
 target[property] = new Directory();
 }
 // otherwise return property as is from target
 // - write method not implemented for actual directory...
 return target[property];
 }
 });
}

// create new Proxy for function
const rootDir = new Directory();

try {
 // check properties relative to root dir...
 rootDir.testDir.test2Dir.testFile = "test.md";
 console.log('exception not raised...');
} catch (event) {
 // error handling for null exception should be OK due to custom proxy...

 console.log(`exception raised...${event}`);
}

JavaScript - Proxy

Reflect a proxy - intro

ES6 introduced a complement to Proxy usage
a new built-in object, Reflect

Proxy traps are mapped one-to-one in the Reflect API

allows an easy combination of Proxy and Reflect usage

e.g. for each trap there is a matching reflect method

JavaScript - Proxy

Reflect a proxy - get trap

e.g. use Reflect.get to define default behaviour for a Proxy
getter.

in this example, now unable to access the _secret property

obvious benefit of this Reflect usage is the abstraction of get
usage
from Proxy getter to a default, re-usable Reflect get method

use the Proxy getter
e.g. to check against data, type &c. in the target

then call the Reflect get method if successful

a useful option for restricting access to certain properties through
a Proxy

expose the Proxy instead of the underlying object
setting access privileges according to requirements

if successful, a request will then be handled by the Reflect API
method

access must now go through the Proxy
and meet its rules and requirements

const handler = {
 get(target, key) {
 if (key.startsWith('_')) {
 throw new Error(`Property "${ key }" is inaccessible.`)
 }
 return Reflect.get(target, key)
 }
}

const target = {}
const proxy = new Proxy(target, handler)
proxy._secret

JavaScript - Proxy

Reflect a proxy - false return

returning an error may still be an indication that the _secret
property exists

alternative is to return an explicit false boolean value for
requested hidden property

a request for underscore value names may still be checked using

underscore property names are still not private
remain visible to specific property checks

const handler = {
 get(target, key) {
 if (key.startsWith('_')) {
 return false;
 }
 return Reflect.get(target, key)
 }
};

const library = {
 archive : 'waldzell',
 curator : 'knechts',
 _secret : true
};
const proxy = new Proxy(library, handler);
console.log(`secret = ${proxy._secret}`);
console.log(`archive = ${proxy.archive}`);

// _secret is not a private property in object -
console.log(proxy.hasOwnProperty('_secret'))

JavaScript - Proxy

Reflect a proxy - set trap - part 1

we may also apply reflection to set traps

reflected set method defines behaviour for a setter on a given
Proxy object

equivalent to the default behaviour for the proxy

e.g.

also add various checks for the passed key…

set(target, key, value) {
 return Reflect.set(target, key, value)
}

JavaScript - Proxy

Reflect a proxy - set trap - part 2

now update our previous example to include a set trap with Proxy
support

then test property access using the get and set traps

const handler = {
 get(target, key) {
 if (key.startsWith('_')) {
 // return false to show prop doesn't exist...
 return false;
 }
 return Reflect.get(target, key)
 },
 set(target, key, value) {
 return Reflect.set(target, key, value);
 }
};

const library = {};
const proxy = new Proxy(library, handler);
proxy.archive = 'mariafels';
proxy._secret = true;

JavaScript - Proxy

Reflect a proxy - defaults and checks

as we use the Reflect object as the default for traps
we may add checks, updates &c. to the Proxy trap itself

e.g. we might add a conditional check to the Proxy
then pass a successful update or query to the Reflect method

default Reflect method allows abstraction for traps from the Proxy

e.g. we might update each trap with a call to the following
conditional check

function is called in each trap before continuing to the Reflect
method for get or set

function keyCheck(key, action) {
 if (key.startsWith('_')) {
 throw new Error(`${action} action is not permitted on '${ key }'`)
 }
}

JavaScript - Proxy

proxy wrapper - part 1

to ensure we restrict access to a target object to the defined
proxy and reflect traps
need to wrap the target itself in a Proxy

target object may have been accessed directly in certain contexts
might be beneficial for an admin mode and access

to restrict access
wrap such objects in the Proxy to restrict access to the defined traps and
handlers

JavaScript - Proxy

proxy wrapper - part 2

e.g. we can modify our previous example for get and set traps

function proxyWrapper() {
 const target = {};
 const handler = {
 get(target, key) {
 if (key.startsWith('_')) {
 // return false to show prop doesn't exist...
 return false;
 }
 return Reflect.get(target, key)
 },
 set(target, key, value) {
 return Reflect.set(target, key, value);
 }
 };
 return new Proxy(target, handler);
}

JavaScript - Proxy

proxy wrapper - part 3

target may now be accessed and managed using an instantiated
proxy

target may not be accessed directly using standard property
access

const proxiedObject = proxyWrapper();
// set prop & value on target using proxy set trap
proxiedObject.archive = 'waldzell';
// target accessible using proxy get trap
console.log(`target archive = ${proxiedObject.archive}`);

// target not directly accessible
console.log(`target = ${target}`);

JavaScript - Proxy

proxy wrapper - pass object to wrapper

we may modify this wrapper to also accept an existing object
may then be returned wrapped in a Proxy

e.g.

const archive = {
 name: 'waldzell'
}

const proxiedArchive = proxyWrapper(archive);

JavaScript - Proxy

proxy wrapper - check object - part 1

add a further check to ensure we always have a target object to
work with..
regardless of passed argument value

e.g. add a check to the proxyWrapper function to ensure target is
always an object

// check object & return empty object if necessary...
function checkTarget(original) {
 // check for existing target object
 if (original.typeof !== 'object' || original === undefined) {
 console.log('not object...');
 const target = {};
 return target;
 } else {
 const target = original;
 return target;
 }
}

JavaScript - Proxy

proxy wrapper - check object - part 2

if we pass a string instead of a target object
we can now create a proxy wrapper with an empty object

properties for admin and _secret may now be set against an
empty object
due to the passed archives string

we can call this function at the top of the proxyWrapper function

const proxiedArchive = proxyWrapper('archives');
// set prop & value on target using proxy set trap
proxiedArchive.admin = 'knechts';
proxiedArchive._secret = '1235813';

function proxyWrapper(original) {
 // check target for proxy wrapper - original must be object
 const target = checkTarget(original);
 ...
}

JavaScript - Proxy

proxy wrapper - update property access check

also abstract initial check for property access using a defined
character delimiter

e.g.

simply check defined delimiter character relative to passed
property key
may then be called in the proxyWrapper function

// check property access using defined char delimiter
function checkDelimiter(key, char) {
 // check key relative to specified char delimiter
 if (key.startsWith(char)) {
 // return false to show prop not available
 return true;
 }
}

if (checkDelimiter(key, '_')){
 return false;
}

JavaScript - Proxy

proxy wrapper - restricting access

in the previous examples
we define the target object both inside and outside the proxyWrapper
function

both may be effective options for restricting object access
depending upon context

internal object declaration for target restricts full access to the
Proxy object

any traps for the object will only be accessible using the Proxy
object

consumer must use the instantiated Proxy object to read, write,
query &c.

external target object may still be useful after it has been
wrapped by a Proxy object

restricted access is controlled by only exposing the target as a
Proxy object

e.g. if we exposed the target as an access point for a pubic API
proxy object will be exposed and not the original target object

JavaScript - Proxy

proxy and schema validation

objects may be defined for a specific purpose or context
requires control over stored properties and values

validation allows us define the structure of an object
e.g. its properties, types, permitted values &c.

we may use a third party module or custom function
may return an error for invalid input and data…

still need to ensure that the object storing the input data is
restricted
e.g. to authorised access both internal and external to the app

another option is to use a Proxy with validation of the object
proxy object may be used to provide access to the model object for
validation

another benefit of a proxy with validation is the separation of
concerns
data object remains separate from the validation

consumer never accesses the input object directly
given a proxy object with validation checks and balances

original input object remains a plain object due to nature of Proxy
object usage

defined proxy handlers for validation &c. may also be referenced
and reused
reuse across multiple Proxies…

JavaScript - Proxy

proxy and validator - part 1

create an initial validator
using a Proxy, a map, and defined handlers for required object
properties

e.g. as a property is set through a proxy object
its key may be checked against the map

if there is a rule for the key, its handler value will be executed

handler executed to check that the property is valid

// MAP - validation rules for properties
const validationMap = new Map();

// TRAPS - define traps for proxy
const validator = {
 // set trap
 set(target, key, value) {
 // check map for matching handler
 if (validationMap.has(key)) {
 // return handler function if available...pass value as parameter
 return validationMap.get(key)(value);
 }

 // else - default reflect set method for proxy
 return Reflect.set(target, key, value);
 }
};

JavaScript - Proxy

proxy and validator - part 2

value may be passed as a parameter to the handler function
stored in the map for the requested key

function may include a validation, check &c.

// RULES - define executable rules for permitted object properties
// e.g. log, update state, get state, broadcast, subscribe...
// e.g. sample validation for text to log
function validateLog(text) {
 if (typeof text === 'string') {
 console.log(`logger = ${text}`);
 } else {
 throw new TypeError(`logger requires text input...`);
 }
}

JavaScript - Proxy

proxy and validator - part 3

we may then use this proxy and map as follows

// set key and handler function in map
validationMap.set('logger', validateLog);
// empty object to wrap with proxy
const process = {};
// instantiate proxy object
const proxyProcess = new Proxy(process, validator);

// string set using handler for logger
proxyProcess.logger = 'test string = hello proxy...';
// number will not be set - fails validation
proxyProcess.logger = 96;

Demos

Design Patterns
Observer - Broadcast, Subscribe, & Unsubscribe

Pub/Sub

JavaScript - Prototype
basic prototype

basic set prototype

basic prototype object

basic prototype object properties

basic prototype dynamic

basic constructor check

inheritance with prototype

inheritance with prototype - updated

configure object properties

JavaScript - ES Class
basic ES Class

basic Prototype equivalent

http://linode4.cs.luc.edu/teaching/cs/demos/422/observer/basic1/
http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-chain/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance-props/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-dynamic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-check-constructor/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/object-properties/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-class/
http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-equivalent/

Resources

Design Patterns
Observer - Wikipedia

Pub/Sub Messaging - AWS

Pub/Sub - Wikipedia

JavaScript - Prototype
MDN - Object Prototypes

MDN - Inheritance and the prototype chain

JavaScript - ES Class
MDN - Classes

JavaScript - Proxy
MDN - Proxy

MDN - Meta Programming

Project tools
Grunt JavaScript Task Runner

Webpack Asset Bundler

https://en.wikipedia.org/wiki/Observer_pattern
https://aws.amazon.com/pub-sub-messaging/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Meta_programming
https://gruntjs.com/
https://webpack.js.org/

