Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 14

Dr Nick Hayward

Final Demo and Presentation

= presentation and demo - live working app...

e final demo
o due on Monday 20th April 2020 @ 4.15pm

e final report
o due on Monday 27th April 2020 @ 6.45pm

o NO content management systems (CMSs) such as Drupal, Joomla, WordPress...
o NO PHP, Python, Ruby, C# & .Net, Java, Go, XML...

NO CSS frameworks such as Bootstrap, Foundation, Materialize...

NO CSS preprocessors such as Sass...

NO template tools such as Handlebars.js &c.

must implement data from either

¢ self hosted (MongoDB, Redis...)

o APIs

e cloud services (Firebase...)

e NO SQL..e.g. (you may NOT use MySQL, PostgreSQL &c.)

e explain design decisions
o describe patterns used in design of Ul and interaction
o layout choices...

O O O ©

» show and explain implemented differences from DEV week
o where and why did you update the app?
o perceived benefits of the updates?

e how did you respond to peer review?

= anything else useful for final assessment...
= consider outline of content from final report outline

All project code must be pushed to a repository on
GitHub.

n.b. present your own work contributed to the project,
and its development...

http://csteach424.github.io/assets/docs/extras/2020/comp424-final-report-outline-2020.pdf

Final Report

Report due on Monday 27th April 2020 @ 6.45pm

= final report outline - coursework section of website
o PDF
e group report
e extra individual report - optional

= include repository details for project code on GitHub

http://csteach424.github.io/coursework/
http://csteach424.github.io/assets/docs/extras/2020/comp424-final-report-outline-2020.pdf

Client-side - Data - Firebase

Firebase - intro

= Firebase is hosted platform, acquired by Google
e provides options for data starage, authentication, real-time database querying...

= jt provides and API for data access
e gccess and query JavaScript object data stores
e query in real-time
e [isteners available for all connected apps and users
e synchronisation in milliseconds for most updates...
» notifications

Client-side - Data - Firebase

Firebase - authentication

= authentication with Firebase provides various backend services and SDKs
e help developers manage authentication for an app
e Service supports many different providers, including Facebook, Google, Twitter &c.
e using industry standard OAuth 2.0 and OpenlD Connect protocols

= custom solutions also available per app
e emall
e felephone
* messaging

Client-side - Data - Firebase

Firebase - cloud storage

= Cloud Storage used for uploading, storing, downloading files
e gccessed by apps for file storage and usage...
e features a useful safety check if and when a user’s connection is broken or lost
 files are usually stored in a Google Cloud Storage bucket
» files accessible using either Firebase or Google Cloud
e consider using Google Cloud platform for image filtering, processing, video editing...
e modified files may then become available to Firebase again, and connected apps
e e.g. Google’s Cloud Platform

https://cloud.google.com/shell/docs/features#code_editor

Client-side - Data - Firebase

Firebase - Real-time database

= Real-time Database offers a hosted NoSQL data store
e ability to quickly and easily sync data
e dala synchronisation is active across multiple devices, in real-time
e avallable as and when the dala is updated in the cloud database

= other services and tools available with Firebase
e analytics

e agdvertising services such as adwords

e crash reporting

e notifications

e various testing options...

Client-side - Data - Firebase

Firebase - basic setup

= start using Firebase by creating an account with the service
e using a standard Google account
e Firebase

= |ogin to Firebase
e choose either Get Started material or navigate to Firebase console

» at Console page, get started by creating a new project
e click on the option to Add project
e enter the name of this new project
e and select a region

= then redirected to the console dashboard page for the new project
e gccess project settings, config, maintenance...

= reference documentation for the Firebase Real-Time database,
o htips./firebase.google.com/docs/reference/js/firebase.dalabase

https://firebase.google.com/

Client-side - Data - Firebase

Firebase - create real-time database

= now setup a database with Firebase for a test app

= start by selecting Database option from left sidebar on the Console
Dashboard
e gvailable under the DEVELOP option

then select Get Started for the real-time database

presents an empty database with an appropriate name to match current
project

data will be stored in a JSON format in the real-time database

working with Firebase is usually simple and straightforward for most apps

= get started quickly direct from the Firebase console
e orimport some existing JSON...

Image - Firebase

create a database

egyplian-cards ~ Go to docs ‘ @

Database & RealtimeDatabase - @

DATA RULES BACKUPS USAGE

ED https:/fegyptian-cards.firebaseio.com/ 0 @ H

* Default security rules require users to be authenticated LEARN MORE DISMISS

egyptian-cards: null

Firebase - create a database

Client-side - Data - Firebase

Firebase - import JSON data

= we might start with some simple data to help test Firebase

= import JSON into our test database
e then query the data &c. from the app

{
"cards": [
{
"visible": true,
"title": "Abu Simbel",
"card": "temple complex built by Ramesses II"
3
{
"visible": false,
"title": "Amarna",
"card": "capital city built by Akhenaten”
3
{
"visible": false,
"title": "Giza",
"card": "Khufu's pyramid on the Giza plateau outside Cairo"
}s
{
"visible": false,
"title": "Philae",
"card": "temple complex built during the Ptolemaic period"
}
]

Image - Firebase

JSON import

egyptian-cards ~ Gotodocs M @

Database & Realtime Database ~ @

RULES BACKUPS USAGE

GD https://egyptian-cards.firebaseio.com/ o e 5

egyptian-cards
= cards
-0
I title: “abu simbel”
visible: true
=1
! title: "Giza"
— vigible: false
=2
L title: "Karnak"

— visible: false
=3
L title: "Philae”

visible: false

Firebase - import JSON file

Client-side - Data - Firebase

Firebase - permissions

= initial notification in Firebase console after creating a new database
o Default securily rules require users to be authenticated

= permissions with Firebase database
o select RULES tab for current database

= |ots of options for database rules
e Firebase - database rules

= e.g. for testing initial app we might remove authentication rules
= change rules as follows

from
{
"rules": {
".read": "auth != null",
".write": "auth != null"
}
}
fo
{
"rules": {
".read": "true",

".write": "true"
}
}

https://firebase.google.com/docs/database/security/quickstart

Client-side - Data - Firebase

add data with plain JS objects

= plain objects as standard Firebase storage
» helps with data updating
e helps with auto-increment pushes of data...

{
"egypt": {
"code": "eg",
"ancient_sites": {
"abu_simbel": {
"title": "abu simbel",
"kingdom": "upper",
"location”: "aswan governorate",
"coords": {
"lat": 22.336823,
"long": 31.625532

}J
"date": {
"start": {
"type": "bc",
"precision": "approximate",
"year": 1264
}s
"end": {
"type": "bc",
"precision"”: "approximate",
"year": 1244
}
}
1
"karnak": {
"title": "karnak",
"kingdom": "upper",
"location": "luxor governorate",
"coords": {
"lat": 25.719595,
"long": 32.655807
3
"date": {
"start": {
"type": "bc",
"precision"”: "approximate",
"year": 2055
}J
"end": {
"type": "ad",

"precision"”: "approximate",

"year": 100

Image - Firebase

JSON import

GO hitps:/fegyptian-cards firebaseio.com/

egyptian-cards

- egypt
3. ancient_sites
3. abu_simbel
). coords

lat: 22.336823

..long: 31.625532

precision: "approximate"
------- type: "bc"
------- year: 1244

=} start

precision: "approximate"
....... type: "bc"

------- year: 1264

------- kingdom: "upper”

location: "aswan governorate”

------- title: "abu simbel”
- karnak

= coords
------- lat; 25.719595
------- long: 32.6558087

------- precision: "approximate"
....... type: “ad"
------- year: 188

= start

precision: "approximate"
------- type: "bc"
------- year: 2855

....... kingdom: "upper”

location: "luxor governorate”

------- title: "karnak”
------- code: "eg"

Firebase - import JSON file

LT

Client-side - Data - Firebase

add to app’s index.html

= start testing setup with default config in app’s index.html file
e eg.

<!-- JS - Firebase app -->
<script src="https://www.gstatic.com/firebasejs/5.5.8/firebase.js"></script>
<script>
// Initialise Firebase
var config = {
apiKey: "YOUR_API_KEY",
authDomain: "422cards.firebaseapp.com”,
databaseURL: "https://422cards.firebaseio.com",
projectId: "422cards",
storageBucket: "422cards.appspot.com”,
messagingSenderId: "282356174766"
s
firebase.initializeApp(config);
</script>

= example includes initialisation information so the SDK has access to
o Authentication
e Cloud storage
o Realtime Database
e Cloud Firestore

n.b. don’t forget to modify the above values to match
your own account and database...

Client-side - Data - Firebase

customise API usage

= possible to customise required components per app
= allows us to include only features required for each app

. e.g. the only required component is

- firebase-app - core Firebase client (required
component)

<!-- Firebase App is always required and must be first -->
<script src="https://www.gstatic.com/firebasejs/5.5.8/firebase-app.js"></script>

= we may add a mix of the following optional components,
e firebase-auth - various authentication options

firebase-database - realtime database

firebase-firestore - cloud Firestore

firebase-functions - cloud based function for Firebase

firebase-storage - cloud storage

firebase-messaging - Firebase cloud messaging

Client-side - Data - Firebase

modify JS in app’s index.html

<!-- Add additional services that you want to use -->
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-auth.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-database.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-firestore.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5

5

<script src="https://www.gstatic.com/firebasejs/5.

.3/firebase-messaging.js"></script>
.3/firebase-storage.js"></script>

<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-functions.js"></script>

= then define an object for the config of the required services and options,

var config = {
// add API key, services &c.
}s

firebase.initializeApp(config);

Client-side - Data - Firebase

initial app usage - DB connection

= after defining required config and initialisation
e Slart to add required listeners and calls to app’s JS

define DB connection

= we can establish a connection to our Firebase DB as follows,

const db = firebase.database();

= then use this reference to connect and query our database

Client-side - Data - Firebase

initial app usage - ref() method

= with the connection to the database
e we may then call the ref (), or reference, method
e use this method to read, write &c. data in the database

= by default, if we call ref() with no arguments
e our query will be relative to the root of the database
e e.g. reading, writing &c. relative to the whole database

= we may also request a specific reference in the database
e pass a location path, e.g.

db.ref('egypt/ancient_sites/abu_simbel/title').set('Abydos');

= allows us to create multiple parts of the Firebase database

= such parts might include,
o multiple objects, properties, and values &c.

= a quick and easy option for organising and distributing data

Client-side - Data - Firebase

write data - intro

= also write data to the connected database
e ggain from a JavaScript based application

= Firebase supports many different JavaScript datatypes, including
e strings
e numbers
e booleans
e objects
e arays

= j.e. any values and data types we add to JSON
* n.b. Firebase may not maintain the native structure upon import
e e.g. arrays will be converted to plain JavaScript objects in Firebase

Client-side - Data - Firebase

write data - set all data

= set data for the whole database by calling the ref () method at the root
e e.g.

db.ref().set({
site: 'abu-simbel’,
title: 'Abu Simbel',
date: 'c.1264 B.C.',
visible: true,
location: {
country: 'Egypt',

code: 'EG',
address: 'aswan'
}
coords: {

lat: '22.336823°',
long: '31.625532°
}
1)

Client-side - Data - Firebase

write data - set data for a specific data location

= also write data to a specific location in the database

= add an argument to the ref () method
e specifying required location in the database

e eg.
db.ref('egypt/ancient_sites/abu_simbel/location').set('near aswan');

= ref() may be called relative to any depth in the database from the root
= allows us to update anything from whole DB to single property value

Client-side - Data - Firebase

Promises with Firebase

= Firebase includes native support for Promises and associated chains
e we do not need to create our own custom Promises

= we may work with a return Promise object from Firebase
* Using a standard chain, methods...

= e.g. when we call the set() method
o Firebase will return a Promise object for the method execution

= set () method will not explicitly return anything except for success or error

e we can simply check the return promise as follows,

db.ref('egypt/ancient_sites/abu_simbel/title")
.set('Abu Simbel')

.then(() => {
// log data set success to console
console.log('data set...");

}

.catch((e) => {
// catch error from Firebase - error logged to console
console.log('error returned', e);

1)

Client-side - Data - Firebase

remove data - intro

= we may also delete and remove data from the connected database

= various options for removing such data, including
e specific location

all data

set() withnull

by updating data

Client-side - Data - Firebase

remove data - specify location

= we may also delete data at a specific location in the connected database
e eg.

db.ref('egypt/ancient_sites/abu_simbel/kingdom")

.remove()

.then(() => {
// Llog data removed success to console
console.log('data removed..."');

D)

.catch((e) => {
// catch error from Firebase - error lLogged to console
console.log('error returned', e);

1)

Client-side - Data - Firebase

remove data - all data

= also remove all of the data in the connected database
e eg.

db.ref()
.remove()
.then(() => {
// Llog data removed success to console
console.log('data removed..."');
D)

.catch((e) => {
// catch error from Firebase - error lLogged to console
console.log('error returned', e);

1)

Client-side - Data - Firebase

remove data - set() with null

= another option specified in the Firebase docs for deleting data
e byusing set() method with anull value

e eg.

db.ref('egypt/ancient_sites/abu_simbel/kingdom")

.set(null)

.then(() => {
// log data removed success to console
console.log('data set to null...");

)]

.catch((e) => {
// catch error from Firebase - error logged to console
console.log('error returned', e);

1)

Client-side - Data - Firebase
update data - intro

= also combine setting and removing data in a single pattern
e using the update () method call to the defined database reference

= meant to be used to update multiple items in database in a single call
= we must pass an object as the argument to the update() method

Client-side - Data - Firebase

update data - existing properties

= to update multiple existing properties
e e.g.

db.ref('egypt/ancient_sites/abu_simbel/").update({
title: 'The temple of Abu Simbel’,
visible: false

1)

Client-side - Data - Firebase

update data - add new properties

= also add a new property to a specific location in the database

db.ref('egypt/ancient_sites/abu_simbel/").update({
title: 'The temple of Abu Simbel’,
visible: false,
date: 'c.1264 B.C.'

1

= still set new values for the two existing properties
e title andvisible

= add a new property and value for data

= update() method will only update the specific properties
e does not override everything at the reference location
e compare with the set () method..

Client-side - Data - Firebase

update data - remove properties

= also combine these updates with option to remove an existing property
e e.g.

db.ref('egypt/ancient_sites/abu_simbel/").update({
card: null,
title: 'The temple of Abu Simbel’,
visible: false,
date: 'c.1264 B.C.',

1)

= null used to delete specific property from reference location in DB

= at the reference loaction in the DB, we’re able to combine
e creating new property
e updating a property
e deleting existing properties

Client-side - Data - Firebase

update data - multiple properties at different locations

= also combine updating data in multiple objects at different locations
e Jocations relative to initial passed reference location

e eg.

db.ref().update({
'egypt/ancient_sites/abu_simbel/visible': true,
'egypt/ancient_sites/karnak/visible': false

1)

= relative to the root of the dabatase
e now updated multiple title properties in different objects

= 1n.b. update is only for child objects relative to specified ref location
* due to character restrictions on the property name
e e.g. the name may not begin with ., / &c.

Client-side - Data - Firebase

update data - Promise chain

= update() method will also return a Promise object
e allows us to chain the standard methods

e eg.

db.ref().update({
'egypt/ancient_sites/abu_simbel/visible': true,
'egypt/ancient_sites/karnak/visible': false

}).then(() => {

console.log('update success..."');
}).catch((e) => {
console.log('error = ', e);
1

= as with set() and remove()
o Promise object itself will return success or error for method call

Client-side - Data - Firebase

read data - intro

= fetch data from the connected database in many different ways, e.g.
e all of the data

e ora single specific part of the data
= also connect and retrieve data once

= another option is to setup a listener
e used for polling the database for live updates...

Client-side - Data - Firebase

read data - all data, once

= retrieve all data from the database a single time

// ALL DATA ONCE - request all data ONCE
// - returns Promise value
db.ref().once('value')
.then((snapshot) => {
// snapshot of the data - request the return value for the data at the time of query...
const data = snapshot.val();
console.log('data = ', data);
D)
.catch((e) => {
console.log('error returned - ', e);

1)

Client-side - Data - Firebase

read data - single data, once

= we may query the database once for a single specific value
e eg.

// SINGLE DATA - ONCE
db.ref('egypt/ancient_sites/abu_simbel/"').once('value")
.then((snapshot) => {

// snapshot of the data - request the return value for the data at the time of query...

const data = snapshot.val();

console.log('single data = ', data);
D)
.catch((e) => {

console.log('error returned - ', e);
3

= returns value for object at the specified location
e egypt/ancient_sites/abu_simbel/

Client-side - Data - Firebase

read data - listener for changes - subscribe

= also setup listeners for changes to the connected database
e then continue to poll the DB for any subsequent changes

e eg.

// LISTENER - poll DB for data changes

// - any changes in the data

db.ref().on('value', (snapshot) => {
console.log('listener update = ', snapshot.val());

1)

= on() method polls the DB for any changes in value
= then get the current snapshot value for the data stored

= any change in data in the online database
e [istener will automatically execute defined success callback function

Client-side - Data - Firebase

read data - listener for changes - subscribe - error handling

= also add some initial error handling for subscription callback
e e.g.

// LISTENER - SUBSCRIBE
// - poll DB for data changes
// - any changes in the data
db.ref().on('value', (snapshot) => {
console.log('listener update = ', snapshot.val());
b, (e) =>{
console.log('error reading db', e);

1)

Client-side - Data - Firebase

read data - listener - why not use a Promise?

= as listener is notified of updates to the online database
e we need the callback function to be executed

= callback may need to be executed multiple times
* e.g. for many updates to the stored data

= a Promise may only be resolved a single time
o with eitherresolve orreject

= to use a Promise in this context

» we would need to instantiate a new Promise for each update
e would not work as expected

e therefore, we use a standard callback function

= a callback may be executed as needed
e each and every time there is an update to the DB

Client-side - Data - Firebase

read data - listener for changes - unsubscribe

= need to unsubscribe from all or specific changes in online database
e eg.

db.ref().off();

= removes a// current subscriptions to defined DB connection

Client-side - Data - Firebase

read data - listener for changes - unsubscribe

= also unsubscribe a specific subscription by passing callback
e callback as used for the original subscription

= abstract the callback function
e pass itto bothon() andoff () methods for database ref () method
e eg.

// abstract callback
const valChange = (snapshot) => {
console.log('listener update = ', snapshot.val());

}s

Client-side - Data - Firebase

read data - listener for changes - unsubscribe

= then pass this variable as callback argument
e for both subscribe and unsubscribe events

e eg.

// subscribe
db.ref().on('value', valChange);
// unsubscribe
db.ref().off(valChange);

= allows our app to maintain the DB connection
e and unsubscribe a specific subscription

Client-side - Data - Firebase

working with arrays

= Firebase does not explicitly support array data structures
e converts array objects to plain JavaScript objects

= e.g. import the following JSON with an array

{
"cards": [
{
"visible": true,
"title": "Abu Simbel",
"card": "temple complex built by Ramesses II"
3
{
"visible": false,
"title": "Amarna",
"card": "capital city built by Akhenaten"
b
{
"visible": false,
"title": "Giza",
"card": "Khufu's pyramid on the Giza plateau outside Cairo"
3
{
"visible": false,
"title": "Philae",
"card": "temple complex built during the Ptolemaic period"
}
]

Image - Firebase

JSON import with array

egyptian-cards ~ Gotodocs M @

Database & Realtime Database ~ @

RULES BACKUPS USAGE

CD hitps:/fegyptian-cards firebaseio.com/ o e

egyptian-cards
= cards
-0
I title: “abu simbel”
visible: true
=1
! title: "Giza"
— vigible: false
=2
L title: "Karnak"

~— visible: false
=3
L title: "Philae”

visible: false

Firebase - import JSON file

Client-side - Data - Firebase

working with arrays - index values

= each index value will now be stored as a plain object
e with an auto-increment value for the property

e eg.

cards: {
0: {
card: "temple complex built by Ramesses II",
title: "Abu Simbel",
visible: "true"
}
}

Client-side - Data - Firebase

working with arrays - access index values

= we may still access each index value from the original array object
» without easy access to pre-defined, known unique references

= e.g. to access the title value of a given card
e need to know its auto-generated property value in Firebase

db.ref('cards/0")

= reference will be the path to the required object
e then access a given property on the object

= even if we add a unique reference property to each card
e still need fto know assigned property value in Firebase

Client-side - Data - Firebase

working with arrays - push() method

= add new content to an existing Firebase datastore
= we may use the push() method to add this data

= a unique property value will be auto-generated for pushed data
e e.g.

// push new data to specific reference in db
db.ref('egypt/ancient_sites/"').push({
"philae": {
"kingdom": "upper",
"visible": false
}
3

= new data created with auto-generated ID for parent object
e eg.

LPcdS31H_u9NedIn27_

= may be useful for dynamic content pushed to a datastore
e e.g. notes, tasks, calendar dates &c.

Client-side - Data - Firebase

working with arrays - Firebase snapshot methods

= various data snapshot methods in the Firebase documentation
= commonly used method with snapshot is the val() method

= many additional methods specified in APl documentation for DataSnapshot
e e.g. forEach() - iterator for plain objects from Firebase
e Firebase Docs - DataSnapshot

https://firebase.google.com/docs/reference/js/firebase.database.DataSnapshot

Client-side - Data - Firebase

working with arrays - create array from Firebase data

= as we store data as plain objects in Firebase
» need to consider how we may work with array-like structures
e /e. for technologies and patterns that require array data structures
e e.g Redux

= need to get data from Firebase, then prepare it for use as an array

= to help us work with Firebase object data and arrays
e we may call forEach() method on the return snapshot
e provides required iterator for plain objects stored in Firebase

e eg.

// get ref in db once
// call forEach() on return snapshot
// push values to local array
// unique 1id for each DB parent object is “kRey” property on snapshot
db.ref('egypt/ancient_sites"')
.once('value')
.then((snapshot) => {
const sites = [];
snapshot.forEach((siteSnapshot) => {
sites.push({
id: siteSnapshot.key,
...siteSnapshot.val()
3
})s

console.log('sites array = ', sites);

1)

Image - Firebase

snapshot forEach() - creating a local array

sites array = firebase.js:166

(3)

@l

[{~}, {=}, {=}] B

id: n n
philae: {kingdom: , visible: false}
: Object

coords: {lat: 22.336823, long: 31.625532}
date: {end: {..}, start: {.}}
id: " .
kingdom: "
location: ™
title: "
visible: true
: Object

coords: {lat: 25.719595, long: 32.655807}
date: {end: {.}, start: {.}}
id: " "
kingdom: " .
location: ™
title: " '
visible: false
: Object

: Array(0)

Firebase - local array

= we now have a local array from the Firebase object data
» use with options such as Redux...

Client-side - Data - Firebase

add listeners for value changes

= as we modify objects, properties, values &c. in Firebase
e set listeners to return notifications for such updates
» e.g. add a single listener for any update relative to full datastore

// LISTENER - SUBSCRIBE - v.2
// - get all data & then push return data to local array...
db.ref('egypt').on('value', (snapshot) => {
const sites = [];
snapshot.forEach((siteSnapshot) => {
sites.push({
id: siteSnapshot.key,
...siteSnapshot.val()
3
3

console.log('sites array after update = ', sites);

1)

= the on() method does not return a Promise object
e we need to define a callback for the return data

Client-side - Data - Firebase

listener events - intro
= for subscriptions and updates
o Firebase provides a few different events

= for the on() method, we may initially consult the following documentation
e Firebase docs -on() events

= need to test various listeners for datastore updates

https://firebase.google.com/docs/reference/js/firebase.database.Reference#on

Client-side - Data - Firebase

listener events - child_removed event

= add a subscription for event updates
e as a child object is removed from the data store.

= child_removed event may be added as follows,

// - listen for child_removed event relative to current ref path in DB
db.ref('egypt/ancient_sites/').on('child_removed', (snapshot) => {
console.log('child removed = ', snapshot.key, snapshot.val());

1)

Client-side - Data - Firebase

listener events - child_changed event

= also listen for the child_changed event
e relative to the current path passed to ref()
e eg.

// - listen for child_changed event relative to current ref path in DB

db.ref('egypt/ancient_sites/"').on('child_changed', (snapshot) => {
console.log('child changed = ', snapshot.key, snapshot.val());

1

Client-side - Data - Firebase

listener events - child_added event

= another common event is adding a new child to the data store
e g user may create and add a new note or to-do item...
» e.g. new child added to specified reference

// - listen for child_added event relative to current ref path in DB

db.ref('egypt/ancient_sites/').on('child_added', (snapshot) => {
console.log('child added = ', snapshot.key, snapshot.val());

1

Client-side - Data - Firebase

extra notes

= Firebase - authentication
= Firebase - setup & usage

https://csteach424.github.io/assets/docs/extras/2019/data-stores/firebase/ds-firebase-auth-guide.pdf
https://csteach424.github.io/assets/docs/extras/2019/data-stores/firebase/ds-firebase-guide.pdf

Data visualisation

intro - part 1
= data visualisation - study of how to visually communicate and analyse data

= covers many disparate aspects
» including infographics, exploratory tools, dashboards...

= already some notable definitions of data visualisation

= one of the better known examples,

‘Data visualisation is the representation and presentation of dala that
exploits our visual perception in order to amplify cognition.”

(Kirk, A. “Data Visualisation: A successful design process.” Packt
Publishing. 20172.)

= several variants of this general theme exist
e the underlying premise remains the same

= simply, data visualisation is a visual representation of the underlying data

= visualisation aims to impart a better understanding of this data
e by association, its relevant context

Data visualisation

intro - part 2

= an inherent flip-side to data visualisation

= without a correct understanding of its application
e jt can simply impart a false perception, and understanding, on the dataset

= run the risk of creating many examples of standard areal unit problem
e perception often based on creators base standard and potential bias

= inherently good at seeing what we want to see

= without due care and attention visualisations may provide false summations
of the data

Data visualisation

types - part 1

= many different ways to visualise datasets
e many ways to customise a standard infographic

= some standard examples that allow us to consider the nature of
visualisations

e nfographics
e exploratory visualisations
e dashboards

= perceived that data visualisation is simply a variation between
e /nfographics, exploratory tools, charts, and some data art

1. infographics * well suited for representing large datasets of contextual information *
often used in projects more inclined to exploratory data analysis,

e fend to be more interactive for the user
o data science can perceive infographics as improper data visualisation because

e they are designed to guide a user through a story

e the main facts are often already highlighted
o NB: such classifications often still only provide tangible reference points

Data visualisation

types - part 2

2. exploratory visualisations * more interested in the provision of tools to explore and
interpret datasets * visualisations can be represented either static or interactive * from

a user perspective these charts can be viewed
e either carefully

e simply become interactive representations
o both perspectives help a user discover new and interesting concepts

o interactivity may include

e option for the user (o filter the dataset
e /nteract with the visualisation via manipulation of the data

e modify the resultant information represented from the data
o often perceived as more objective and data oriented than other forms

3. dashboards * dense displays of charts * represent and understand a given issue,
domain...

e as quickly and effectively as possible
o examples of dashboards

e display of server logs, website users, business data..

Data visualisation

Dashboards - intro

= dashboards are dense displays of charts

= allow us to represent and understand the key metrics of a given issue
e as quickly and effective as possible
e eg. consider display of server logs, website users, and business data...

= one definition of a dashboard is as follows,

‘A dashboard is a visual display of the most important information needed
to achieve one or more objective, consolidated and arranged on a single
screen so the information can be monitored at a glance.”

Few, Stephen. Information Dashboard Design.: The Effective Visual
Communication of Data. O'Reilly Medlia. 2006.

= dashboards are visual displays of information
e can contain text elements
e primarily a visual display of data rendered as meaningful information

Data visualisation

Dashboards - intro

= information needs to be consumed quickly
e often simply no available time to read long annotations or repeatedly click controls

= information needs to be visible, and ready to be consumed

= dashboards are normally presented as a complementary environment
e an option to other tools and analytical/exploratory options

= design issues presented by dashboards include effective distribution of
available space
e compact charts that permit quick data retrieval are normally preferred

= dashboards should be designed with a purpose in mind
e generalised information within a dashboard is rarely useful
o display most important information necessary to achieve their defined purpose

» a dashboard becomes a central view for collated data
e represented as meaningful information

Data visualisation

Dashboards - good practices

= to help promote our information
» need to design the dashboard to fully exploit available screen space

= need to use this space to help users absorb as much information as possible

= some visual elements more easily perceived and absorbed by users than
others

= some naturally convey and communicate information more effectively than
others

= such attributes are known as pre-attentive attributes of visual perception

= for example,
e colour
o form
e position

Data visualisation

Dashboards - visual perception

= pre-attentive attributes of visual perception

1. Colour* many different colour models currently available * most useful relevant to
dashboard design is the ASL model * this model describes colour in terms of three
attributes

o hue
e saturation

o Jightness * perception of colour often depends upon context

2. Form* correct use of length, width, and general size can convey quantitative
dimensions

e each with varying degrees of precision
o use the Laws of Pragnanz to manipulate groups of similar shapes and designs

e thereby easily grouping like data and information for the user

3. Position * relative positioning of elements helps communicate dashboard information
* laws of Pragnanz teach us

e position can often infer a perception of relationship and similarity
e higher items are often perceived as being better

e jtems on the left of the screen traditionally seen first by a western user

Data visualisation

Building a dashboard

= need to clearly determine the questions that need to be answered
e given the information collated and presented within the dashboard

= need to ensure that any problems can be detected on time
= be certain why we actually need a dashboard for the current dataset

= then begin to collect the requisite data to help us answer such questions
e data can be sourced from multiple, disparate datasets

= chosen visualisations help us tell this story more effectively
= present it in a manner appealing to our users

= need to consider information visualisations familiar to our users
e helps reduce any potential user's cognitive overload

= carefully consider organisation of data and information

= organise the data into logical units of information
e helps present dashboard information in a meaningful manner

= dashboard sections should be organised
e to help highlight and detect any underlying or prevailing issues
e then present them to the user

Image - Google Analytics

maggongie com
nCoogli: 5 @ Home Reporting Customizaion Admin @Cﬁ*&mmmfu::w:_- o A
0
S All Traffic @ Oct 24, 2014 - Nov 23, 2014 ~
Custorice Email Export - Add o Dmsbboard Shosteut This repon i based on 88,644 (100% of Slower magonse, greater precision ~ | B
BI Dashboards sessians). Learn mare
s Shorouts Al Sessians ® + Add Segment
@ intsligance Everts Explorar @
Summary Site Usage’ IS0t 1 Ecommaence
Rk Timar
Sestoes VB Salsctamat Duy | Wesk Mot of o
il Audience ® Sessions
- ®
% Acqus
Crorvian ®:500
Charnals
All Traffic rry Word ey i
Al Refarrals B
Campaigns Pricary Deaesion: Scurte) Medium Sorce Medus Heywird Cther -+
+ Keywords Socondary dimension * | Bonl Type: | Dedaut = Q svarced [@ @ T | R S T
+ AdWords
Aoty e Bohuvist Comversions Lo
+ Social
Seurce | Madius - o
+ Gaarch Enging Sessions b BesSER p BowncoRit gussin AVD-Swmscn Trnsactens R
Sl Ouration
Cost Analysis. . 66,644 B6.85% 57,877
e Sttt | Bk orTon wotTot
HOG00% (96 644) Ll 100 06% (57 M7 100.00% {7) 100
B Bahavior {0.08%)
1. (direct) { {nona) 34,538 (3143 BT34% 30,188 (5212%) AN 402 O0:02:36 voncon) | BN
= 2. youbsbacom | referal 13418 ooy AR 12733 mroow) SAETN 153 0000 51 0 moow |

Dashboard - Google Analytics

Image - Yahoo Flurry

Dashboard - Yahoo Flurry

Image - Mint

Dashboard - Mint

Data visualisation - D3

Intro - part 1

= D3 is a custom JavaScript library
e designed for the manipulation of data centric documents
e uses a custom library with HTML, CSS, and SVG
e creates graphically rich, informative documents for the presentation of data

= D3 uses a data-driven approach to manipulate the DOM
= Setup and configuration of D3 is straightforward
e most involved aspect is the configuration of a web server

= D3.js works with standard HTML files
» requires a web server capable of parsing and rendering HTML...

= to parse D3 correctly we need
o UTF-8 encoding reference in a meta element in the head section of our file
o reference D3 file, CDN in standard script element in HTML

Data visualisation - D3

intro - part 2

= D3 Wiki describes the underlying functional concepts as follows,

D3’s functional style allows code reuse through a diverse collection of
components and plugins.

D3 Wiki

= in JS, functions are objects
e as with other objects, a function is a collection of a name and value pair

= real difference between a function object and a regular object
e g function can be invoked, and associated, with two hidden properties
* jnclude a function context and function code

= variable resolution in D3 relies on variable searching being performed locally
first

= if a variable declaration is not found
e search will continue to the parent object
e continue recursively to the next static parent
e until it reaches global variable definition
e /fnot found, a reference error will be generated for this variable

= important to keep this static scoping rule in mind when dealing with D3

https://github.com/mbostock/d3/wiki

Data visualisation - D3

Data Intro - part 1

= Data is structured information with an inherent perceived potential for
meaning

= consider data relative to D3
e need to know how data can be represented
e both in programming constructs and its associated visual metaphor

= what is the basic difference between data and information?

Data are raw facts. The word raw indicates that the facts have not yet
been processed >>> to reveal their meaning...Information is the result of
processing raw data to reveal >>> jts meaning.

Rob, Morris, and Coronel. 2009

= a general concept of data and information
= consider them relative to visualisation, impart a richer interpretation

= information, in this context, is no longer
e the simple result of processed raw data or facts
e jt becomes a visual metaphor of the facts

= same data set can generate any number of visualisations
e may lay equal claim in terms of its validity

= visualisation is communicating creator’s insight into data...

Data visualisation - D3

Data Intro - part 2

= relative to development for visualisation
» data will often be stored simply in a text or binary format

= not simply textual data, can also include data representing
* /mages, audio, video, streams, archives, models...

= for D3 this concept may often simply be restricted to
e lextual dala, or text-based data...

* any data represented as a series of numbers and strings containing alpha numeric
characters
= suitable textual data for use with D3

» lext stored as a comma-separated value file (.csv)
e JSON document (.json)
e plain text file (.txt)

= data can then be boundto elements within the DOM of a page using D3
* /nherent pattern for D3

Data visualisation - D3

Data Intro - Enter-Update-Exit Pattern

= in D3, connection between data and its visual representation
o usually referred to as the enter-update-exit pattern

= concept is starkly different from the standard imperative programming style
= pattern includes

* enter mode

e update mode

e exit mode

Data visualisation - D3

Data Intro - Enter-Update-Exit Pattern

Enter mode

= enter() function returns all specified data that not yet represented in visual
domain

= standard modifier function chained to a selection method

e create new visual elements representing given data elements
e eg: keep updating an array, and outputting new data bound to elements

Update mode

= selection.data(data) function on a given selection
e establishes connection between data domain and visual domain

= returned result of intersection of data and visual will be a data-bound
selection

= now invoke a modifier function on this newly created selection
e update all existing elements
 this is what we mean by an update mode

Exit mode
= invoke selection.data(data).exit function on a data-bound selection

e function computes new selection
e contains all visual elements no longer associated with any valid data element

= e(Q: create a bar chart with 25 data points
e then update it to 20, so we now have 5 left over
e exit mode can now remove excess elements for 5 spare data points

Data visualisation - D3

Data Intro - binding data - part 1

= consider standard patterns for working with data

= we can iterate through an array, and then bind the data to an element
e most common option in D3 is to use the enter-update-exit pattern

= use same basic pattern for binding object literals as data
= to access our data we call the required attribute of the supplied data
var data = [
{height: 10, width: 20},

{height: 15, width: 25}
15

function (d) {
return (d.width) + "px";

}

= then access the height attribute per object in the same manner

= we can also bind functions as data
e D3 allows functions to be treated as data...

Data visualisation - D3

Data Intro - binding data - part 2

= D3 enables us to bind data to elements in the DOM
e gssociating data to specific elements
e allows us to reference those values later
* S0 that we can apply required mapping rules

= use D3’s selection.data() method to bind our data to DOM elements
* we obviously need some data to bind, and a selection of DOM elements

= D3 is particularly flexible with data
e happily accepts various types

= D3 also has a built-in function to handle loading JSON data

d3.json("testdata.json", function(json) {
console.log(json); //do something with the json...

1)

Data visualisation - D3

Data Intro - working with arrays - options

= min and max = return the min and max values in the passed array

d3.select("#output").text(d3.min(ourArray));
d3.select("#output").text(d3.max(ourArray));

= extent = retrieves both the smallest and largest values in the the passed
array

d3.select("#output").text(d3.extent(ourArray));
= SUm
d3.select("#output").text(d3.sum(ourArray));

= median
d3.select("#output").text(d3.median(ourArray));
= Mmean

d3.select("#output").text(d3.mean(ourArray));

= asc and desc

d3.select("#output").text(ourArray.sort(d3.ascending));
d3.select("#output").text(ourArray.sort(d3.descending));

= & many more...

Data visualisation - D3

Data Intro - working with arrays - nest

= D3’s nest function used to build an algorithm
e [lransforms a flat array data structure into a hierarchical nested structure
= function can be configured using the key function chained to nest

= nesting allows elements in an array to be grouped into a hierarchical tree
structure

e similar in concept to the group by option in SQL
o nest allows multiple levels of grouping
e resultis a tree rather than a flat table

= |evels in the tree are defined by the ey function
= |eaf nodes of the tree can be sorted by value
= internal nodes of the tree can be sorted by key

Data visualisation - D3

Selections - intro

= Selection is one of the key tasks required within D3 to manipulate and
visualise our data

= simply allows us to target certain visual elements on a given page
= Selector support is now standardised upon the W3C specification for the
Selector API

e supported by all of the modern web browsers
e jis limitations are particularly noticeable for work with visualising data

= Selector API only provides support for selector and not selection
e able to select an element in the document
e to manipulate or modify its data we need to implement a standard loop etc

= D3 introduced its own selection API to address these issues and perceived
shortcomings

e ability to select elements by ID or class, its attributes, set element IDs and class, and
so on...

http://www.w3.org/TR/selectors-api/

Data visualisation - D3

Selections - single element

= select a single element within our page

d3.select("p");

= now select the first <p> element on the page, and then allow us to modify as
necessary

e eg; we could simply add some text to this element

d3.select("p")
.text("Hello World");

= selection could be a generic element, such as <p>
e or a specific element defined by targeting its ID

= use additional modifier functions, such as attr, to perform a given
modification on the selected element

//set an attribute for the selected element
d3.select("p").attr("foo");
//get the attribute for the selected element
d3.select("p").attr("foo");

= also add or remove classes on the selected element

//test selected element for specified class
d3.select("p").classed("foo")

//add a class to the selected element
d3.select("p").classed("goo", true);

//remove the specified class from the selected element
d3.select("p").classed("goo", function(){ return false; });

Data visualisation - D3

Selections - multiple elements

= also select all of the specified elements using D3

d3.selectAll("p")
.attr("class", "para");

= use and implement multiple element selection
e same as single selection pattern

= also use the same modifier functions
= allows us to modify each element’s attributes, style, class..

Data visualisation - D3

Selections - iterating through a selection

= D3 provides us with a selection iteration API
e allows us to iterate through each selection
e then modify each selection relative to its position
e very similar to the way we normally loop through data

d3.selectAll("p")

.attr("class", "para")

.each(function (d, i) {
d3.select(this).append("h1").text(i);

1

= D3 selections are essentially like arrays with some enhancements
» use the iterative nature of Selection AP/

d3.selectAll('p")

.attr("class", "para2")

.text(function(d, i) {
return i;

1)

Data visualisation - D3

Selections - performing sub-selection

= for selections - often necessary to perform specific scope requests
» eg. selecting all <p> elements for a given <div> element

//direct css selector (selector lLevel-3 combinators)
d3.select("div > p")
.attr("class", "para");

//d3 style scope selection

d3.select("div")
.selectAll("p")
.attr("class", "para");

= both examples produce the same effect and output, but use very different
selection techniques

o first example uses the CSS3, level-3, selectors
e div > p is known as combinators in CSS syntax

Data visualisation - D3

Selections - combinators
Example combinators..

1. descendant combinator

= uses the pattern of selector selector - describing loose parent-child
relationship

= |oose due to possible relationships - parent-child, parent-grandchild...

d3.select("div p");

= select the <p> element as a child of the parent <div> element
e relationship can be generational

2. child combinator

= uses same style of syntax, selector > selector

= able to describe a more restrictive parent-child relationship between two
elements

d3.select("div > p");

= finds <p> element if it is a direct child to the <div> element

Data visualisation - D3

Selections - D3 sub-selection

= sub-selection using D3’s built-in selection of child elements

= a simple option to select an element, then chain another selection to get the
child element

= this type of chained selection defines a scoped selection within D3
e eg: selecting a <p> element nested within our selected <div> element
e each selection is, effectively, independent

= D3 API built around the inherent concept of function chaining

e can almost be considered a Domain Specific Language for dynamically building
HTML/SVG elements

= a benefit of chaining = easy to produce concise, readable code

var body = d3.select("body");

body.append("div")
.attr("id", "divi")
.append("p")
.attr("class", "para")
.append("h5")
.text("this is a paragraph heading...");

Data visualisation - D3

Data Intro - page elements

= generation of new DOM elements normally fits
e either circles, rectangles, or some other visual form that represents the data

= D3 can also create generic structural elements in HTML, such as a <p>
* eg: we can append a standard p element to our new page

d3.select("body").append("p").text("sample text...");

= used D3 to select body element, then append a new <p> element with text
“new paragraph”

= D3 supports chain syntax
e allowed us toselect, append, and add text in one statement

Data visualisation - D3

Data Intro - page elements

d3.select("body").append("p").text("sample text...");

= d3
o references the D3 object, access its built-in methods

= .select("body")

e accepts a CSS selector, returns first instance of the matched selector in the
document’s DOM

e .selectAlLL()
o NB: this method is a variant of the single select()
o returns all of the matched CSS selectors in the DOM

= _append("p")
e creates specified new DOM element
e gppends it to the end of the defined select CSS selector

= .text("new paragraph")

» lakes defined string, ‘new paragraph”
e gdds it to the newly created <p> DOM element

Data visualisation - D3

Binding data - making a selection

= choose a selector within our document
» eg. we could select all of the paragraphs in our document

d3.select("body").selectAll("p");

= if the element we require does not yet exist
* need to use the method enter()

d3.select("body").selectAll("p").data(dataset).enter().append("p").text("new paragraph");

= we get new paragraphs that match total number of values currently available
in the dataset
e gkin to looping through an array
e oulputting a new paragraph for each value in the array

= create new, data-bound elements using enter()
e method checks the current DOM selection, and the data being assigned fto it

= if more data values than matching DOM elements
e enter() creates a new placeholder element for the data value
» then passes this placeholder on to the next step in the chain, eg. append()

= data from dataset also assigned to new paragraphs

= NB: when D3 binds data to a DOM element, it does not exist in the DOM
itself
» Jt does exist in the memory

Data visualisation - D3

Binding data - using the data

= change our last code example as follows,

d3.select("body").selectAll("p").data(dataset).enter().append("p").text(function(d) { return d; });

= then load our HTML, we’ll now see dataset values output instead of fixed text

= anytime in the chain after calling the data() method
e we can then access the current data using d

= also bind other things to elements with D3, eg: CSS selectors, styles...

.style("color", "blue");

= chain the above to the end of our existing code
* now bind an additional css style attribute to each <p> element
e furning the font colour blue

= extend code to include a conditional statement that checks the value of the
data

» eg. simplistic striped colour option

.style("color", function(d) {
if (d % 2 == 0) {

return "green";

} else {

return "blue";

}

1

= DEMO - D3 basic elements

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-basic-element

Image - D3 Basic Elements

Testing - D3

Hame | &3 basic dement

Basic - add text

some samphe text...

Basic - add element
p element...
p element...
p elemant..
p element...
P alemant...

p elemant...

Basic - add dmay valud 1o demant (with colour)

]

Basic - add key & valué to slemant

key =0, valua =0
key = 1, valua

key = 2, valua =2

key = 3, valua = 3
key = 4, value = 4

key = 5, valug = 5

D3 - basic elements

Data visualisation - D3

Drawing - intro - part 1

1. drawing divs

one of the easiest ways to draw a rectangle, for example, is with a HTML
<div>

an easy way to start drawing a bar chart for our stats

start with standard HTML elements, then consider more powerful option of
drawing with SVG

semantically incorrect, we could use <div> to output bars for a bar chart
use of an emply <div> for purely visual effect

using D3, add a class to an empty element using selection.attr()
method

2. setting attributes

attr() is used to set an HTML attribute and its value on an element

= After selecting the required element in the DOM

e assign an attributes as follows

.attr("class", "barchart")

Data visualisation - D3

Drawing - intro - part 2

= use D3 to draw a set of bars in divs as follows

var dataset = [1, 2, 3, 4, 5];

d3.select("body").selectAll("div")
.data(dataset)
.enter()
.append("div")
.attr("class", "bar");

= above sample outputs the values from our dataset with no space between
them
o effectively as a bar chart of equal height

= modify the height of each representative bar
e by setting height of each bar as a function of its corresponding data value
e eg. append the following to our example chain

.style("height", function(d) {
return d + "px";

1)

= make each bar in our chart more clearly defined by modifying style

.style("height", function(d) {
var barHeight = d * 3;
return barHeight + "px";

1)

Data visualisation - D3

Drawing - intro - part 3
1. drawing SVGs

= properties of SVG elements are specified as attributes
= represented as property/value pairs within each element tag

<element property="value">...</element>

» SVG elements exist in the DOM
e we can still use D3 methods append() andattr()
e create new HTML elements and set their attributes

2. create SVG

= need to create an element for our SVG
= allows us to draw and output all of our required shapes

d3.select("body").append("svg");

= variable effectively works as a reference
e points to the newly created SV G object
o allows us to use this reference to access this element in the DOM

= DEMO - Drawing with SVG

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-basic-drawing

Image - D3 Basic Drawing

Testing - D3

Home | d3 basic drawing

Basic drawing - add text

genius is 1% inspiration, 99% perspiration

Basic drawing - add circles

Basic drawing - add rectangles

D3 - basic drawing

Data visualisation - D3

Drawing - SVG barchart - part 1

= create a new barchart using SVG, need to set the required size for our SVG
output

//width & height
var w = 750;
var h = 200;

= then use D3 to create an empty SVG element, and add it to the DOM

var svg = d3.select("body")
.append("svg")
Lattr("width", w)
.attr("height", h);

= instead of creating DIVs as before, we generate rects and add them to the
Ssvg element.

svg.selectAll("rect")
.data(dataset)
.enter()
.append("rect")
.attr("x", 0)
Latte("y", 0)
.attr("width", 10)
.attr("height", 50);

Data visualisation - D3

Drawing - SVG barchart - part 2

= this code selects all of the rect elements within svg
= jnitially none, D3 still needs to select them before creating them

= data() then checks the number of values in the specified dataset
e hands those values to the enter method for processing

= enter method then creates a placeholder
e for each dala value without a corresponding rect
e also appends a rectangle to the DOM for each data value

= then use attr method to set x, y, width, height values for each
rectangle

= still only outputs a single bar due to an overlap issue

= need to amend our code to handle the width of each bar
» implement flexible, dynamic coordinates to fit available SVG width and height
* visualisation scales appropriately with the supplied data

.attr("x", function(d, i) {
return i * (w / dataset.length);
}

Data visualisation - D3

Drawing - SVG barchart - part 3

= now linked the x value directly to the width of the SVG w
e and the number of values in the dataset, dataset. Length
e the bars will be evenly spaced regardless of the number of values

= if we have a large number of data values
e bars still look like one horizontal bar
e unless there is sufficient width for parent SVG and space between each bar

= try to solve this as well by setting the bar width to be proportional
e narrower for more data, wider for less data

var w = 750;
var h = 200;
var barPadding = 1;

= now set each bar’s width
» as a fraction of the SVG width and number of data points, minus our padding value

.attr("width", w / dataset.length - barPadding)

= our bar widths and x positions scale correctly regardless of data values

Data visualisation - D3

Drawing - SVG barchart - part 4

= encode our data as the height of each bar

.attr("height", function(d) {
return d * 4;

1)

= our bar chart will size correctly, albeit from the top down
* due to the nature of SVG

o SVG adheres to a top left pattern for rendering shapes

= to correct this issue
e need to calculate the top position of our bars relative to the SVG

= top of each bar expressed as a relationship
» between the height of the SVG and the corresponding data value

.attr("y", function(d) {
//height minus data value
return h - d;

H

= bar chart will now display correctly from the bottom upwards
= DEMO - Drawing with SVG - barcharts

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-data-drawing-bar

Image - D3 Barcharts

Testing - D3

Home | d3 data draw ng bar

Bar chart 1 - no correction

wreeTT

Bar chart 2 - correction

_l._l-- IILI m W

D3 - drawing_barcharts

Data visualisation - D3

Drawing - SVG barchart - part 5
1. add some colour

= adding a colour per bar simply a matter of setting an attribute for the fill
colour

.attr("fill", "blue");

= set many colours using the data itself to determine the colour

.attr("fill", function(d) {
return "rgb(e, 0, " + (d * 10) + ")";
1)

2. add text labels

= also set dynamic text labels per bar, which reflect the current dataset

svg.selectAll("text")
.data(dataset)
.enter()

.append("text")

= extend this further by positioning our text labels

.attr("x", function(d, i) {
return i * (w / dataset.length);
1))
.attr("y", function(d, i) {
return h - (d * 4);
1

= then position them relative to the applicable bars, add some styling, colours...

.attr("font-family", "sans-serif")
.attr("font-size", "11px")
.attr("fill", "white");

= DEMO - Drawing with SVG - barcharts, colour, and text labels

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-github-commits-barchart

Image - D3 Barcharts

Testing - D3

Home | d3 github commits barchart

Total commits per month - calendar

Total commits per month - cumulative

2345
2098
1575
‘

D3 - drawing_barcharts with colour and text

Data visualisation - D3

Drawing - add interaction - listeners

= event listeners apply to any DOM element for interaction
e from a button to a <p> with the body of a HTML page

<p>this is a HTML paragraph...</p>

= add a listener to this DOM element

d3.select("p")
.on("click", function() {
//do something with the element...
1)

= above sample code selects the <p> element
e then adds an event listener to that element

m event listeneris an anonymous function
e /istens for .on event for a specific element or group of elements

= in our example,
e on() function takes two arguments

Data visualisation - D3

Drawing - add interaction - update visuals

= achieved by combining
e event listener
e modification of the visuals relative to changes in data

d3.select("p")
.on("click", function() {

dataset = [....];

//update all of the rects
svg.selectAll("rect")
.data(dataset)

.attr("y", function(d) {
return h - yScale(d);

})s
.attr("height", function(d) {
return yScale(d);

s
s

= above code triggers a change to visuals for each call to the event listener

= eg: change the colours
e gddcalltofill() to update bar colours

.attr("fill", function(d) {
return "rgb(0, 0, " + (d * 10) + ")";
1)

= DEMO - update bar colours

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-data-drawing-bar

Image - D3 Barcharts

_ll_l-- .ILI m H_

Bar chart 3 - colours

D3 - drawing_colour updates for barcharts

Data visualisation - D3

Drawing - add interaction - transitions

= adding a fun transition in D3 is as simple as adding the following,

.transition()

= add this to above code chain to get a fun and useful transition in the data
= animation reflects the change from the old to the new data

= add a call to the duration() function
o allows us to specify a time delay for the transition
* quick, slow..we can specify each based upon time

= chain the duration() function after transition()

.transition().duration(1000)

= if we want to specify a constant easing to the transition
e yseease() with a Linear parameter

.ease(linear)

= other built-in options, including
e circle - gradual ease in and acceleration until elements snap into place
e elastic - best described as springy
e bounce - like a ball bouncing, and then coming to rest..

Data visualisation - D3

Drawing - add interaction - transitions

= add a delay using the delay() function

.transition()
.delay(1000)
.duration(2000)

= also set the delay() function dynamically relative to the data,

.transition()
.delay(function(d, i) {
return i * 100;

D)
.duration(500)

= when passed an anonymous function
e datum bound to the current element is passed into d
* /ndex position of that element is passed into i

= in the above code example, as D3 loops through each element
e delay for each element is setfoi * 100

e meaning each subsequent element will be delayed 100ms more than preceding
element

= DEMO - transitions - interactive sort

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-github-interactive-sort

Data visualisation - D3

Drawing - add interaction - adding values and elements

» select all of the bars in our chart

we can rebind the new data to those bars

e and grab the new update as well

var bars = svg.selectAll("rect")

.data(dataset);

= if more new elements, bars in our example, than original length
e useenter() to create references to those new elements that do not yet exist

= with these reserved elements

we can use append() to add those new elements to the DOM
now updates our bar chart as well

= now made the new rect elements

need to update all visual attributes for ourrects

set x, and y position relative to new dataset length

set width and height based upon new xScale and yScale
calculated from new dataset length

Data visualisation - D3

Drawing - add interaction - removing values and elements

= more DOM elements than provided data values
o D3’s exit selection contains references to those elements without specified data
e exit selection is simply accessed using the exit() function

= grab the exitselection

= then transition exiting elements off the screen
o for example to the right

= then finally remove it

bars.exit()
.transition()
.duration(500)
attr("x", w)
.remove();

= remove() is a special transition method that awaits until transition is
complete

» then deletes element from DOM forever
e [o gel it back, we'd need to rebuild it again

Data visualisation - D3

Drawing - SVG scatterplot - intro

= scatterplot allows us to visualise two sets of values on two different axes
» one set of data against another
= plot one set of data on x axis, and the other on the y axis

= often create dimensions from our data
» helps us define patterns within our dataset
e eg. date against age, or age against fitness...

= dimensions will also be represented relative to xand y axes

= create our scatterplot using SVG
» add our SVG to a selected element

Image - D3 Scatterplot

Testing - D3

Home | d3 data drawing scatter

@312.13
110,25 @22.27

.03. 52

@ .154. os (2®

.;:m_ 125
.21_ 120
.142, 155

72,192

D3 - drawing_a basic scatterplot

Data visualisation - D3

Drawing - SVG scatterplot - data

= data for the scatterplot is normally stored as a multi-dimensional
representation

e comparison x and y points

= eg: we could store this data in a multi-dimensional array

var dataset = [
[1e, 22], [33, 8], [76, 39], [4, 15]
1

= in such a multi-dimensional array
* /nner array stores the comparison data points for our scatterplot
e each inner array stores x and y points for scatterplot diagram

= we can also stroe such data in many different structures
e eg. JSON..

Data visualisation - D3

Drawing - SV@G scatterplot - create SVG

= need to create an element for our SVG
e allows us to draw and output all of our required shapes

d3.select("body").append("svg");

= appends to the body an SVG element
o useful to encapsulate this new DOM element within a variable

var svg = d3.select("body").append("svg");

= variable effectively works as a reference
» points to the newly created SVG object
e allows us to use this reference to access element in the DOM

Data visualisation - D3

Drawing - SVG scatterplot - build scatterplot

= as with our barchart, we can set the width and height for our scatterplot,

//width & height
var w = 750;
var h = 200;

= we will need to create circles for use with scatterplot instead of rectangles

svg.selectAll('circle")
.data(dataset)
.enter()
.append(‘circle');

= corresponding to drawing circles
e setcx, the x position value of the centre of the circle
e setcy, the y position value of the centre of the circle
e setr, the radius of the circle

Data visualisation - D3

Drawing - SVG scatterplot - adding circles

= draw circles for scatterplot

.attr('cx', function(d) {
return d[0]; //get first index value for inner array

}
.attr('cy', function(d) {
return d[1]; //get second index value for inner array

}
.attr('r', 5);

= outputs simple circle for each inner array within our supplied multi-
dimensional dataset

= start to work with creating circle sizes relative to data quantities

= set a dynamic size for each circle
e representative of the dala itself
e modify the circle’s area to correspond to its y value

= as we create SVG circles, we cannot directly set the area
* So we need to calculate the radius r
e then modify that for each circle

Data visualisation - D3

Drawing - SVG scatterplot - calculate dynamic area

= assuming that d[1] is the original area value of our circles
e get the square root and set the radius for each circle

= instead of setting each circle’s radius as a static value
* now use the following

.attr('r', function(d) {
return Math.sqrt(d[1]);
1)

= use the JavaScript Math.sqrt() function to help us with this calculation

Data visualisation - D3

Drawing - SV G scatterplot - add colour

= as with a barchart
= also set a dynamic colour relative to a circle’s data
.attr('fill', function (d) {

return 'rgb(125,' + (d[1]) + ', ' + (d[1] * 2) + ")';
1)

Data visualisation - D3

Drawing - SVG scatterplot - add labels

//add Labels for each circle
svg.selectAll('text")
.data(dataset)
.enter()
.append('text")
.text(function(d) {
return d[0] + ', ' + d[1];//set each data point on the text Llabel

D)
.attr('x', function(d) {
return d[0];

)]
.attr('y', function(d) {
return d[1];

D)

.attr('font-family', 'serif')
.attr('font-size', '12px')
.attr('fill', 'navy');

= start by adding text labels for our data
* adding new text elements where they do not already exist

= then set the text label itself for each circle
* Using the data values stored in each inner array

= make the label easier to read
e Ssetx andy coordinates relative to data points for each circle

= set some styles for the labels

Image - D3 Scatterplot
Testing - D3

Home | d3 data drawing scales

@02 .27

.63.35

.203.60

.14_05 .‘}5'92
.Jm. 105

.2 1,139
.142_155

72,192

D3 - drawing_a basic scatterplot 2

Data visualisation - D3

Drawing - SVG - scales

= in D3, scales are defined as follows,

‘Scales are functions that map from an input domain to an output range”

Bostock, M.

= you can specify your own scale for the required dataset
* eg. to avoid massive data values that do not translate correctly to a visualisation
e scale these values to look better within you graphic

= to achieve this result, you simply use the following pattern.
e define the parameters for the scale function

e call the scale function
o pass a data value to the function

e the scale function returns a scaled output value for rendering

= also define and use as many scale functions as necessary for your
visualisation

= important to realise that a scale has no direct relation to the visual output
» /tIs a mathematical relationship

= need to consider scales and axes
» Iwo separate, different concepts relative to visualisations

Data visualisation - D3

Drawing - SVG - domains and ranges

= /nput domain for a scale is its possible range of input data values
» /n effect, initial data values stored in your original dataset

= oulput range is the possible range of output values
» normally use as the pixel representation of the data values
» g personal consideration of the designer
= normally set a minimum and maximum output range for our scaled data
= scale function then calculates the scaled output
e based upon original data and defined range for scaled output
= many different types of scale available for use in D3

= three primary types
e quantitative
e ordinal
e fime

m quantitative scale types also include other built-in scale types
= many methods available for the scale types

Data visualisation - D3

Drawing - SV@G - building a scale

= start building our scale in D3
e used3.scale with our preferred scale type

var scale = d3.scale.linear();

= to use the scale effectively, we now need to set our input domain

scale.domain([10, 350]);

= then we set the output range for the scale

scale.range([1, 100]);

= we can also chain these methods together

var scale = d3.scale.linear()
.domain([10, 350])
.range([1, 100]);

Data visualisation - D3

Drawing - SVG - adding dynamic scales

= we could pre-define values for our scale relative to a given dataset
= makes more sense to abstract these values relative to the defined dataset

= we can now use the D3 array functions to help us set these scale values
e eg, find highest number in array dataset

d3.max(dataset, function(d) {
return d[0];
3

= returns highest value from the supplied array

= getting minimum value in array works in the same manner
e withd3.min() being called instead

= NOw create a scale function for x and y axes

var scaleX = d3.scale.linear()
.domain([@, d3.max(dataset, function(d) { return d[@]; })])
.range([0, w]);//set output range from @ to width of svg

= Y axis scale modifies above code relative to provided data, d[1]
e range uses height instead of width

= for a scatterplot we can use these values to set cx and cy values

Image - D3 Scatterplot

Testing - D3

Home | d3 data drawing axes

.IIU.:S

PN

.‘.‘.l_i')

.I-h'l. 72

.u,o&
.‘u 105 .lx:. 105

.m_m

D3 - add axis

Data visualisation - D3

Drawing - SVG - adding dynamic scales

= a few data visualisation examples
e Jests 1
e Jests 2

http://linode4.cs.luc.edu/ancientlives/d3-github/
http://linode4.cs.luc.edu/ancientlives/data-visualisation/dhcs/

Data Visualisation

general examples

Sample dashboards and visualisations

gaming dashboard
schools and education

students and grades

D3 examples

Example datasets

= Chicago data portal

Article example

= dashboard designs
= replace jQuery with D3

https://samples.dundas.com/Dashboard/d13a1600-3171-4d18-841a-b4e67f21ebe4?e=false&vo=viewonly
https://samples.dundas.com/Dashboard/9a59b5cc-8999-4896-acf1-3f1f594f8d6c?e=false&vo=viewonly
https://samples.dundas.com/Scorecard/6badb7c0-903f-496e-a3b0-7cfcf7b8de08?e=false&vo=viewonly
https://github.com/d3/d3/wiki/Gallery
https://data.cityofchicago.org/
http://designrfix.com/design/dashboard-design
http://blog.webkid.io/replacing-jquery-with-d3/

Data Visualisation

projects examples

A few examples from recent projects,

= GitHub API tests

= check JSON return

= early test examples
= metrics test examples

http://linode4.cs.luc.edu/ancientlives/metrics/dashboard.php
http://linode4.cs.luc.edu/ancientlives/js/jquery/literal_include/test-jsonp5.html
http://linode4.cs.luc.edu/ancientlives/data-visualisation/dhcs/
https://luc-metrics.herokuapp.com/projects/

