
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 14

Dr Nick Hayward

Final Demo and Presentation

presentation and demo - live working app…
final demo
due on Monday 20th April 2020 @ 4.15pm

final report
due on Monday 27th April 2020 @ 6.45pm

NO content management systems (CMSs) such as Drupal, Joomla, WordPress…
NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…
NO CSS frameworks such as Bootstrap, Foundation, Materialize…
NO CSS preprocessors such as Sass…
NO template tools such as Handlebars.js &c.
must implement data from either
self hosted (MongoDB, Redis…)
APIs
cloud services (Firebase…)
NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

explain design decisions
describe patterns used in design of UI and interaction
layout choices…

show and explain implemented differences from DEV week
where and why did you update the app?
perceived benefits of the updates?

how did you respond to peer review?

anything else useful for final assessment…

consider outline of content from final report outline

…

All project code must be pushed to a repository on
GitHub.

n.b. present your own work contributed to the project,
and its development…

http://csteach424.github.io/assets/docs/extras/2020/comp424-final-report-outline-2020.pdf

Final Report

Report due on Monday 27th April 2020 @ 6.45pm

final report outline - coursework section of website
PDF

group report

extra individual report - optional

include repository details for project code on GitHub

http://csteach424.github.io/coursework/
http://csteach424.github.io/assets/docs/extras/2020/comp424-final-report-outline-2020.pdf

Client-side - Data - Firebase

Firebase - intro

Firebase is hosted platform, acquired by Google
provides options for data starage, authentication, real-time database querying…

it provides and API for data access
access and query JavaScript object data stores

query in real-time

listeners available for all connected apps and users

synchronisation in milliseconds for most updates…

notifications

Client-side - Data - Firebase

Firebase - authentication

authentication with Firebase provides various backend services and SDKs
help developers manage authentication for an app

service supports many different providers, including Facebook, Google, Twitter &c.

using industry standard OAuth 2.0 and OpenID Connect protocols

custom solutions also available per app
email

telephone

messaging

…

Client-side - Data - Firebase

Firebase - cloud storage

Cloud Storage used for uploading, storing, downloading files
accessed by apps for file storage and usage…

features a useful safety check if and when a user’s connection is broken or lost

files are usually stored in a Google Cloud Storage bucket

files accessible using either Firebase or Google Cloud

consider using Google Cloud platform for image filtering, processing, video editing…

modified files may then become available to Firebase again, and connected apps

e.g. Google’s Cloud Platform

https://cloud.google.com/shell/docs/features#code_editor

Client-side - Data - Firebase

Firebase - Real-time database

Real-time Database offers a hosted NoSQL data store
ability to quickly and easily sync data

data synchronisation is active across multiple devices, in real-time

available as and when the data is updated in the cloud database

other services and tools available with Firebase
analytics

advertising services such as adwords

crash reporting

notifications

various testing options…

Client-side - Data - Firebase

Firebase - basic setup

start using Firebase by creating an account with the service
using a standard Google account

Firebase

login to Firebase
choose either Get Started material or navigate to Firebase console

at Console page, get started by creating a new project
click on the option to Add project
enter the name of this new project

and select a region

then redirected to the console dashboard page for the new project
access project settings, config, maintenance…

reference documentation for the Firebase Real-Time database,
https://firebase.google.com/docs/reference/js/firebase.database

https://firebase.google.com/

Client-side - Data - Firebase

Firebase - create real-time database

now setup a database with Firebase for a test app

start by selecting Database option from left sidebar on the Console
Dashboard
available under the DEVELOP option

then select Get Started for the real-time database

presents an empty database with an appropriate name to match current
project

data will be stored in a JSON format in the real-time database

working with Firebase is usually simple and straightforward for most apps

get started quickly direct from the Firebase console
or import some existing JSON…

Image - Firebase

create a database

Firebase - create a database

Client-side - Data - Firebase

Firebase - import JSON data

we might start with some simple data to help test Firebase

import JSON into our test database
then query the data &c. from the app

{
 "cards": [
 {
 "visible": true,
 "title": "Abu Simbel",
 "card": "temple complex built by Ramesses II"
 },
 {
 "visible": false,
 "title": "Amarna",
 "card": "capital city built by Akhenaten"
 },
 {
 "visible": false,
 "title": "Giza",
 "card": "Khufu's pyramid on the Giza plateau outside Cairo"
 },
 {
 "visible": false,
 "title": "Philae",
 "card": "temple complex built during the Ptolemaic period"
 }
]
}

Image - Firebase

JSON import

Firebase - import JSON file

Client-side - Data - Firebase

Firebase - permissions

initial notification in Firebase console after creating a new database
Default security rules require users to be authenticated

permissions with Firebase database
select RULES tab for current database

lots of options for database rules
Firebase - database rules

e.g. for testing initial app we might remove authentication rules

change rules as follows
from

to

{
 "rules": {
 ".read": "auth != null",
 ".write": "auth != null"
 }
}

{
 "rules": {
 ".read": "true",
 ".write": "true"
 }
}

https://firebase.google.com/docs/database/security/quickstart

Client-side - Data - Firebase

add data with plain JS objects

plain objects as standard Firebase storage
helps with data updating

helps with auto-increment pushes of data…

{
 "egypt": {
 "code": "eg",
 "ancient_sites": {
 "abu_simbel": {
 "title": "abu simbel",
 "kingdom": "upper",
 "location": "aswan governorate",
 "coords": {
 "lat": 22.336823,
 "long": 31.625532
 },
 "date": {
 "start": {
 "type": "bc",
 "precision": "approximate",
 "year": 1264
 },
 "end": {
 "type": "bc",
 "precision": "approximate",
 "year": 1244
 }
 }
 },
 "karnak": {
 "title": "karnak",
 "kingdom": "upper",
 "location": "luxor governorate",
 "coords": {
 "lat": 25.719595,
 "long": 32.655807
 },
 "date": {
 "start": {
 "type": "bc",
 "precision": "approximate",
 "year": 2055
 },
 "end": {
 "type": "ad",
 "precision": "approximate",

 "year": 100
 }
 }
 }
 }
 }
}

Image - Firebase

JSON import

Firebase - import JSON file

Client-side - Data - Firebase

add to app’s index.html

start testing setup with default config in app’s index.html file
e.g.

example includes initialisation information so the SDK has access to
Authentication

Cloud storage

Realtime Database

Cloud Firestore

n.b. don’t forget to modify the above values to match
your own account and database…

<!-- JS - Firebase app -->
<script src="https://www.gstatic.com/firebasejs/5.5.8/firebase.js"></script>
<script>
 // Initialise Firebase
 var config = {
 apiKey: "YOUR_API_KEY",
 authDomain: "422cards.firebaseapp.com",
 databaseURL: "https://422cards.firebaseio.com",
 projectId: "422cards",
 storageBucket: "422cards.appspot.com",
 messagingSenderId: "282356174766"
 };
 firebase.initializeApp(config);
</script>

Client-side - Data - Firebase

customise API usage

possible to customise required components per app

allows us to include only features required for each app

e.g. the only required component is

firebase-app - core Firebase client (required

component)

we may add a mix of the following optional components,
firebase-auth - various authentication options

firebase-database - realtime database

firebase-firestore - cloud Firestore

firebase-functions - cloud based function for Firebase

firebase-storage - cloud storage

firebase-messaging - Firebase cloud messaging

<!-- Firebase App is always required and must be first -->
<script src="https://www.gstatic.com/firebasejs/5.5.8/firebase-app.js"></script>

Client-side - Data - Firebase

modify JS in app’s index.html

then define an object for the config of the required services and options,

<!-- Add additional services that you want to use -->
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-auth.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-database.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-firestore.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-messaging.js"></script>
<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-storage.js"></script>

<script src="https://www.gstatic.com/firebasejs/5.5.3/firebase-functions.js"></script>

var config = {
 // add API key, services &c.
};
firebase.initializeApp(config);

Client-side - Data - Firebase

initial app usage - DB connection

after defining required config and initialisation
start to add required listeners and calls to app’s JS

define DB connection

we can establish a connection to our Firebase DB as follows,

then use this reference to connect and query our database

const db = firebase.database();

Client-side - Data - Firebase

initial app usage - ref() method

with the connection to the database
we may then call the ref(), or reference, method

use this method to read, write &c. data in the database

by default, if we call ref() with no arguments
our query will be relative to the root of the database

e.g. reading, writing &c. relative to the whole database

we may also request a specific reference in the database
pass a location path, e.g.

allows us to create multiple parts of the Firebase database

such parts might include,
multiple objects, properties, and values &c.

a quick and easy option for organising and distributing data

db.ref('egypt/ancient_sites/abu_simbel/title').set('Abydos');

Client-side - Data - Firebase

write data - intro

also write data to the connected database
again from a JavaScript based application

Firebase supports many different JavaScript datatypes, including
strings

numbers

booleans

objects

arrays

…

i.e. any values and data types we add to JSON
n.b. Firebase may not maintain the native structure upon import

e.g. arrays will be converted to plain JavaScript objects in Firebase

Client-side - Data - Firebase

write data - set all data

set data for the whole database by calling the ref() method at the root

e.g.

db.ref().set({
 site: 'abu-simbel',
 title: 'Abu Simbel',
 date: 'c.1264 B.C.',
 visible: true,
 location: {
 country: 'Egypt',
 code: 'EG',
 address: 'aswan'
 }
 coords: {
 lat: '22.336823',
 long: '31.625532'
 }
});

Client-side - Data - Firebase

write data - set data for a specific data location

also write data to a specific location in the database

add an argument to the ref() method
specifying required location in the database

e.g.

ref() may be called relative to any depth in the database from the root

allows us to update anything from whole DB to single property value

db.ref('egypt/ancient_sites/abu_simbel/location').set('near aswan');

Client-side - Data - Firebase

Promises with Firebase

Firebase includes native support for Promises and associated chains
we do not need to create our own custom Promises

we may work with a return Promise object from Firebase
using a standard chain, methods…

e.g. when we call the set() method
Firebase will return a Promise object for the method execution

set() method will not explicitly return anything except for success or error
we can simply check the return promise as follows,

db.ref('egypt/ancient_sites/abu_simbel/title')
 .set('Abu Simbel')
 .then(() => {
 // log data set success to console
 console.log('data set...');
 })
 .catch((e) => {
 // catch error from Firebase - error logged to console
 console.log('error returned', e);
 });

Client-side - Data - Firebase

remove data - intro

we may also delete and remove data from the connected database

various options for removing such data, including
specific location

all data

set() with null
by updating data

…

Client-side - Data - Firebase

remove data - specify location

we may also delete data at a specific location in the connected database
e.g.

db.ref('egypt/ancient_sites/abu_simbel/kingdom')
 .remove()
 .then(() => {
 // log data removed success to console
 console.log('data removed...');
 })
 .catch((e) => {
 // catch error from Firebase - error logged to console
 console.log('error returned', e);
 });

Client-side - Data - Firebase

remove data - all data

also remove all of the data in the connected database
e.g.

db.ref()
 .remove()
 .then(() => {
 // log data removed success to console
 console.log('data removed...');
 })
 .catch((e) => {
 // catch error from Firebase - error logged to console
 console.log('error returned', e);
 });

Client-side - Data - Firebase

remove data - set() with null

another option specified in the Firebase docs for deleting data
by using set() method with a null value

e.g.

db.ref('egypt/ancient_sites/abu_simbel/kingdom')
 .set(null)
 .then(() => {
 // log data removed success to console
 console.log('data set to null...');
 })
 .catch((e) => {
 // catch error from Firebase - error logged to console
 console.log('error returned', e);
 });

Client-side - Data - Firebase

update data - intro

also combine setting and removing data in a single pattern
using the update() method call to the defined database reference

meant to be used to update multiple items in database in a single call

we must pass an object as the argument to the update() method

Client-side - Data - Firebase

update data - existing properties

to update multiple existing properties
e.g.

db.ref('egypt/ancient_sites/abu_simbel/').update({
 title: 'The temple of Abu Simbel',
 visible: false
});

Client-side - Data - Firebase

update data - add new properties

also add a new property to a specific location in the database

still set new values for the two existing properties
title and visible

add a new property and value for data
update() method will only update the specific properties
does not override everything at the reference location

compare with the set() method…

db.ref('egypt/ancient_sites/abu_simbel/').update({
 title: 'The temple of Abu Simbel',
 visible: false,
 date: 'c.1264 B.C.'
});

Client-side - Data - Firebase

update data - remove properties

also combine these updates with option to remove an existing property
e.g.

null used to delete specific property from reference location in DB

at the reference loaction in the DB, we’re able to combine
creating new property

updating a property

deleting existing properties

db.ref('egypt/ancient_sites/abu_simbel/').update({
 card: null,
 title: 'The temple of Abu Simbel',
 visible: false,
 date: 'c.1264 B.C.',
});

Client-side - Data - Firebase

update data - multiple properties at different locations

also combine updating data in multiple objects at different locations
locations relative to initial passed reference location

e.g.

relative to the root of the dabatase
now updated multiple title properties in different objects

n.b. update is only for child objects relative to specified ref location
due to character restrictions on the property name

e.g. the name may not begin with ., / &c.

db.ref().update({
 'egypt/ancient_sites/abu_simbel/visible': true,
 'egypt/ancient_sites/karnak/visible': false
});

Client-side - Data - Firebase

update data - Promise chain

update() method will also return a Promise object
allows us to chain the standard methods

e.g.

as with set() and remove()
Promise object itself will return success or error for method call

db.ref().update({
 'egypt/ancient_sites/abu_simbel/visible': true,
 'egypt/ancient_sites/karnak/visible': false
}).then(() => {
 console.log('update success...');
}).catch((e) => {
 console.log('error = ', e);
});

Client-side - Data - Firebase

read data - intro

fetch data from the connected database in many different ways, e.g.
all of the data

or a single specific part of the data

also connect and retrieve data once

another option is to setup a listener
used for polling the database for live updates…

Client-side - Data - Firebase

read data - all data, once

retrieve all data from the database a single time

// ALL DATA ONCE - request all data ONCE
// - returns Promise value
db.ref().once('value')
 .then((snapshot) => {
 // snapshot of the data - request the return value for the data at the time of query...
 const data = snapshot.val();
 console.log('data = ', data);
 })
 .catch((e) => {
 console.log('error returned - ', e);
 });

Client-side - Data - Firebase

read data - single data, once

we may query the database once for a single specific value
e.g.

returns value for object at the specified location
egypt/ancient_sites/abu_simbel/

// SINGLE DATA - ONCE
db.ref('egypt/ancient_sites/abu_simbel/').once('value')
 .then((snapshot) => {
 // snapshot of the data - request the return value for the data at the time of query...
 const data = snapshot.val();
 console.log('single data = ', data);
 })
 .catch((e) => {
 console.log('error returned - ', e);
 });

Client-side - Data - Firebase

read data - listener for changes - subscribe

also setup listeners for changes to the connected database
then continue to poll the DB for any subsequent changes

e.g.

on() method polls the DB for any changes in value
then get the current snapshot value for the data stored

any change in data in the online database
listener will automatically execute defined success callback function

// LISTENER - poll DB for data changes
// - any changes in the data
db.ref().on('value', (snapshot) => {
 console.log('listener update = ', snapshot.val());
});

Client-side - Data - Firebase

read data - listener for changes - subscribe - error handling

also add some initial error handling for subscription callback
e.g.

// LISTENER - SUBSCRIBE
// - poll DB for data changes
// - any changes in the data
db.ref().on('value', (snapshot) => {
 console.log('listener update = ', snapshot.val());
}, (e) => {
 console.log('error reading db', e);
});

Client-side - Data - Firebase

read data - listener - why not use a Promise?

as listener is notified of updates to the online database
we need the callback function to be executed

callback may need to be executed multiple times
e.g. for many updates to the stored data

a Promise may only be resolved a single time
with either resolve or reject

to use a Promise in this context
we would need to instantiate a new Promise for each update

would not work as expected

therefore, we use a standard callback function

a callback may be executed as needed
each and every time there is an update to the DB

Client-side - Data - Firebase

read data - listener for changes - unsubscribe

need to unsubscribe from all or specific changes in online database
e.g.

removes all current subscriptions to defined DB connection

db.ref().off();

Client-side - Data - Firebase

read data - listener for changes - unsubscribe

also unsubscribe a specific subscription by passing callback
callback as used for the original subscription

abstract the callback function
pass it to both on() and off() methods for database ref() method

e.g.

// abstract callback
const valChange = (snapshot) => {
 console.log('listener update = ', snapshot.val());
};

Client-side - Data - Firebase

read data - listener for changes - unsubscribe

then pass this variable as callback argument
for both subscribe and unsubscribe events

e.g.

allows our app to maintain the DB connection
and unsubscribe a specific subscription

// subscribe
db.ref().on('value', valChange);
// unsubscribe
db.ref().off(valChange);

Client-side - Data - Firebase

working with arrays

Firebase does not explicitly support array data structures
converts array objects to plain JavaScript objects

e.g. import the following JSON with an array

{
 "cards": [
 {
 "visible": true,
 "title": "Abu Simbel",
 "card": "temple complex built by Ramesses II"
 },
 {
 "visible": false,
 "title": "Amarna",
 "card": "capital city built by Akhenaten"
 },
 {
 "visible": false,
 "title": "Giza",
 "card": "Khufu's pyramid on the Giza plateau outside Cairo"
 },
 {
 "visible": false,
 "title": "Philae",
 "card": "temple complex built during the Ptolemaic period"
 }
]
}

Image - Firebase

JSON import with array

Firebase - import JSON file

Client-side - Data - Firebase

working with arrays - index values

each index value will now be stored as a plain object
with an auto-increment value for the property

e.g.

cards: {
 0: {
 card: "temple complex built by Ramesses II",
 title: "Abu Simbel",
 visible: "true"
 }
}

Client-side - Data - Firebase

working with arrays - access index values

we may still access each index value from the original array object
without easy access to pre-defined, known unique references

e.g. to access the title value of a given card
need to know its auto-generated property value in Firebase

reference will be the path to the required object
then access a given property on the object

even if we add a unique reference property to each card
still need to know assigned property value in Firebase

db.ref('cards/0')

Client-side - Data - Firebase

working with arrays - push() method

add new content to an existing Firebase datastore

we may use the push() method to add this data

a unique property value will be auto-generated for pushed data
e.g.

new data created with auto-generated ID for parent object
e.g.

may be useful for dynamic content pushed to a datastore
e.g. notes, tasks, calendar dates &c.

// push new data to specific reference in db
db.ref('egypt/ancient_sites/').push({
 "philae": {
 "kingdom": "upper",
 "visible": false
 }
});

LPcdS31H_u9N0dIn27_

Client-side - Data - Firebase

working with arrays - Firebase snapshot methods

various data snapshot methods in the Firebase documentation

commonly used method with snapshot is the val() method

many additional methods specified in API documentation for DataSnapshot

e.g. forEach() - iterator for plain objects from Firebase

Firebase Docs - DataSnapshot

https://firebase.google.com/docs/reference/js/firebase.database.DataSnapshot

Client-side - Data - Firebase

working with arrays - create array from Firebase data

as we store data as plain objects in Firebase
need to consider how we may work with array-like structures

i.e. for technologies and patterns that require array data structures

e.g. Redux

need to get data from Firebase, then prepare it for use as an array

to help us work with Firebase object data and arrays
we may call forEach() method on the return snapshot
provides required iterator for plain objects stored in Firebase

e.g.

// get ref in db once
// call forEach() on return snapshot
// push values to local array
// unique id for each DB parent object is `key` property on snapshot
db.ref('egypt/ancient_sites')
 .once('value')
 .then((snapshot) => {
 const sites = [];
 snapshot.forEach((siteSnapshot) => {
 sites.push({
 id: siteSnapshot.key,
 ...siteSnapshot.val()
 });
 });
 console.log('sites array = ', sites);
 });

Image - Firebase

snapshot forEach() - creating a local array

Firebase - local array

we now have a local array from the Firebase object data
use with options such as Redux…

Client-side - Data - Firebase

add listeners for value changes

as we modify objects, properties, values &c. in Firebase
set listeners to return notifications for such updates

e.g. add a single listener for any update relative to full datastore

the on() method does not return a Promise object
we need to define a callback for the return data

// LISTENER - SUBSCRIBE - v.2
// - get all data & then push return data to local array...
db.ref('egypt').on('value', (snapshot) => {
 const sites = [];
 snapshot.forEach((siteSnapshot) => {
 sites.push({
 id: siteSnapshot.key,
 ...siteSnapshot.val()
 });
 });
 console.log('sites array after update = ', sites);
});

Client-side - Data - Firebase

listener events - intro

for subscriptions and updates
Firebase provides a few different events

for the on() method, we may initially consult the following documentation
Firebase docs - on() events

need to test various listeners for datastore updates

https://firebase.google.com/docs/reference/js/firebase.database.Reference#on

Client-side - Data - Firebase

listener events - child_removed event

add a subscription for event updates
as a child object is removed from the data store.

child_removed event may be added as follows,

// - listen for child_removed event relative to current ref path in DB
db.ref('egypt/ancient_sites/').on('child_removed', (snapshot) => {
 console.log('child removed = ', snapshot.key, snapshot.val());
});

Client-side - Data - Firebase

listener events - child_changed event

also listen for the child_changed event
relative to the current path passed to ref()
e.g.

// - listen for child_changed event relative to current ref path in DB
db.ref('egypt/ancient_sites/').on('child_changed', (snapshot) => {
 console.log('child changed = ', snapshot.key, snapshot.val());
});

Client-side - Data - Firebase

listener events - child_added event

another common event is adding a new child to the data store
a user may create and add a new note or to-do item…

e.g. new child added to specified reference

// - listen for child_added event relative to current ref path in DB
db.ref('egypt/ancient_sites/').on('child_added', (snapshot) => {
 console.log('child added = ', snapshot.key, snapshot.val());
});

Client-side - Data - Firebase

extra notes

Firebase - authentication

Firebase - setup & usage

https://csteach424.github.io/assets/docs/extras/2019/data-stores/firebase/ds-firebase-auth-guide.pdf
https://csteach424.github.io/assets/docs/extras/2019/data-stores/firebase/ds-firebase-guide.pdf

Data visualisation

intro - part 1

data visualisation - study of how to visually communicate and analyse data

covers many disparate aspects
including infographics, exploratory tools, dashboards…

already some notable definitions of data visualisation

one of the better known examples,

“Data visualisation is the representation and presentation of data that

exploits our visual perception in order to amplify cognition.”

(Kirk, A. “Data Visualisation: A successful design process.” Packt

Publishing. 2012.)

several variants of this general theme exist
the underlying premise remains the same

simply, data visualisation is a visual representation of the underlying data

visualisation aims to impart a better understanding of this data
by association, its relevant context

Data visualisation

intro - part 2

an inherent flip-side to data visualisation

without a correct understanding of its application
it can simply impart a false perception, and understanding, on the dataset

run the risk of creating many examples of standard areal unit problem
perception often based on creator’s base standard and potential bias

inherently good at seeing what we want to see

without due care and attention visualisations may provide false summations
of the data

Data visualisation

types - part 1

many different ways to visualise datasets
many ways to customise a standard infographic

some standard examples that allow us to consider the nature of
visualisations
infographics

exploratory visualisations

dashboards

perceived that data visualisation is simply a variation between
infographics, exploratory tools, charts, and some data art

1. infographics * well suited for representing large datasets of contextual information *
often used in projects more inclined to exploratory data analysis,
tend to be more interactive for the user
data science can perceive infographics as improper data visualisation because

they are designed to guide a user through a story

the main facts are often already highlighted
NB: such classifications often still only provide tangible reference points

Data visualisation

types - part 2

2. exploratory visualisations * more interested in the provision of tools to explore and
interpret datasets * visualisations can be represented either static or interactive * from
a user perspective these charts can be viewed
either carefully

simply become interactive representations
both perspectives help a user discover new and interesting concepts

interactivity may include

option for the user to filter the dataset

interact with the visualisation via manipulation of the data

modify the resultant information represented from the data
often perceived as more objective and data oriented than other forms

3. dashboards * dense displays of charts * represent and understand a given issue,
domain…
as quickly and effectively as possible
examples of dashboards

display of server logs, website users, business data…

Data visualisation

Dashboards - intro

dashboards are dense displays of charts

allow us to represent and understand the key metrics of a given issue
as quickly and effective as possible

eg: consider display of server logs, website users, and business data…

one definition of a dashboard is as follows,

“A dashboard is a visual display of the most important information needed

to achieve one or more objective; consolidated and arranged on a single

screen so the information can be monitored at a glance.”

Few, Stephen. Information Dashboard Design: The Effective Visual

Communication of Data. O’Reilly Media. 2006.

dashboards are visual displays of information
can contain text elements

primarily a visual display of data rendered as meaningful information

Data visualisation

Dashboards - intro

information needs to be consumed quickly
often simply no available time to read long annotations or repeatedly click controls

information needs to be visible, and ready to be consumed

dashboards are normally presented as a complementary environment
an option to other tools and analytical/exploratory options

design issues presented by dashboards include effective distribution of
available space
compact charts that permit quick data retrieval are normally preferred

dashboards should be designed with a purpose in mind
generalised information within a dashboard is rarely useful

display most important information necessary to achieve their defined purpose

a dashboard becomes a central view for collated data
represented as meaningful information

Data visualisation

Dashboards - good practices

to help promote our information
need to design the dashboard to fully exploit available screen space

need to use this space to help users absorb as much information as possible

some visual elements more easily perceived and absorbed by users than
others

some naturally convey and communicate information more effectively than
others

such attributes are known as pre-attentive attributes of visual perception

for example,
colour

form

position

Data visualisation

Dashboards - visual perception

pre-attentive attributes of visual perception

1. Colour * many different colour models currently available * most useful relevant to
dashboard design is the HSL model * this model describes colour in terms of three
attributes
hue

saturation

lightness * perception of colour often depends upon context

2. Form * correct use of length, width, and general size can convey quantitative
dimensions
each with varying degrees of precision
use the Laws of Prägnanz to manipulate groups of similar shapes and designs

thereby easily grouping like data and information for the user

3. Position * relative positioning of elements helps communicate dashboard information
* laws of Prägnanz teach us
position can often infer a perception of relationship and similarity

higher items are often perceived as being better

items on the left of the screen traditionally seen first by a western user

Data visualisation

Building a dashboard

need to clearly determine the questions that need to be answered
given the information collated and presented within the dashboard

need to ensure that any problems can be detected on time

be certain why we actually need a dashboard for the current dataset

then begin to collect the requisite data to help us answer such questions
data can be sourced from multiple, disparate datasets

chosen visualisations help us tell this story more effectively

present it in a manner appealing to our users

need to consider information visualisations familiar to our users
helps reduce any potential user’s cognitive overload

carefully consider organisation of data and information

organise the data into logical units of information
helps present dashboard information in a meaningful manner

dashboard sections should be organised
to help highlight and detect any underlying or prevailing issues

then present them to the user

Image - Google Analytics

Dashboard - Google Analytics

Image - Yahoo Flurry

Dashboard - Yahoo Flurry

Image - Mint

Dashboard - Mint

Data visualisation - D3

Intro - part 1

D3 is a custom JavaScript library
designed for the manipulation of data centric documents

uses a custom library with HTML, CSS, and SVG

creates graphically rich, informative documents for the presentation of data

D3 uses a data-driven approach to manipulate the DOM

Setup and configuration of D3 is straightforward
most involved aspect is the configuration of a web server

D3.js works with standard HTML files
requires a web server capable of parsing and rendering HTML…

to parse D3 correctly we need
UTF-8 encoding reference in a meta element in the head section of our file

reference D3 file, CDN in standard script element in HTML

Data visualisation - D3

intro - part 2

D3 Wiki describes the underlying functional concepts as follows,

D3’s functional style allows code reuse through a diverse collection of

components and plugins.

D3 Wiki

in JS, functions are objects
as with other objects, a function is a collection of a name and value pair

real difference between a function object and a regular object
a function can be invoked, and associated, with two hidden properties

include a function context and function code

variable resolution in D3 relies on variable searching being performed locally
first

if a variable declaration is not found
search will continue to the parent object

continue recursively to the next static parent

until it reaches global variable definition

if not found, a reference error will be generated for this variable

important to keep this static scoping rule in mind when dealing with D3

https://github.com/mbostock/d3/wiki

Data visualisation - D3

Data Intro - part 1

Data is structured information with an inherent perceived potential for
meaning

consider data relative to D3
need to know how data can be represented

both in programming constructs and its associated visual metaphor

what is the basic difference between data and information?

Data are raw facts. The word raw indicates that the facts have not yet

been processed >>> to reveal their meaning…Information is the result of

processing raw data to reveal >>> its meaning.

Rob, Morris, and Coronel. 2009

a general concept of data and information

consider them relative to visualisation, impart a richer interpretation

information, in this context, is no longer
the simple result of processed raw data or facts

it becomes a visual metaphor of the facts

same data set can generate any number of visualisations
may lay equal claim in terms of its validity

visualisation is communicating creator’s insight into data…

Data visualisation - D3

Data Intro - part 2

relative to development for visualisation
data will often be stored simply in a text or binary format

not simply textual data, can also include data representing
images, audio, video, streams, archives, models…

for D3 this concept may often simply be restricted to
textual data, or text-based data…

any data represented as a series of numbers and strings containing alpha numeric
characters

suitable textual data for use with D3
text stored as a comma-separated value file (.csv)

JSON document (.json)

plain text file (.txt)

data can then be bound to elements within the DOM of a page using D3
inherent pattern for D3

Data visualisation - D3

Data Intro - Enter-Update-Exit Pattern

in D3, connection between data and its visual representation
usually referred to as the enter-update-exit pattern

concept is starkly different from the standard imperative programming style

pattern includes
enter mode

update mode

exit mode

Data visualisation - D3

Data Intro - Enter-Update-Exit Pattern

Enter mode

enter() function returns all specified data that not yet represented in visual
domain

standard modifier function chained to a selection method
create new visual elements representing given data elements

eg: keep updating an array, and outputting new data bound to elements

Update mode

selection.data(data) function on a given selection
establishes connection between data domain and visual domain

returned result of intersection of data and visual will be a data-bound

selection

now invoke a modifier function on this newly created selection
update all existing elements

this is what we mean by an update mode

Exit mode

invoke selection.data(data).exit function on a data-bound selection
function computes new selection

contains all visual elements no longer associated with any valid data element

eg: create a bar chart with 25 data points
then update it to 20, so we now have 5 left over

exit mode can now remove excess elements for 5 spare data points

Data visualisation - D3

Data Intro - binding data - part 1

consider standard patterns for working with data

we can iterate through an array, and then bind the data to an element
most common option in D3 is to use the enter-update-exit pattern

use same basic pattern for binding object literals as data

to access our data we call the required attribute of the supplied data

then access the height attribute per object in the same manner

we can also bind functions as data
D3 allows functions to be treated as data…

var data = [
 {height: 10, width: 20},
 {height: 15, width: 25}
];

function (d) {
 return (d.width) + "px";
}

Data visualisation - D3

Data Intro - binding data - part 2

D3 enables us to bind data to elements in the DOM
associating data to specific elements

allows us to reference those values later

so that we can apply required mapping rules

use D3’s selection.data() method to bind our data to DOM elements
we obviously need some data to bind, and a selection of DOM elements

D3 is particularly flexible with data
happily accepts various types

D3 also has a built-in function to handle loading JSON data

d3.json("testdata.json", function(json) {
 console.log(json); //do something with the json...
});

Data visualisation - D3

Data Intro - working with arrays - options

min and max = return the min and max values in the passed array

extent = retrieves both the smallest and largest values in the the passed
array

sum

median

mean

asc and desc

& many more…

d3.select("#output").text(d3.min(ourArray));
d3.select("#output").text(d3.max(ourArray));

d3.select("#output").text(d3.extent(ourArray));

d3.select("#output").text(d3.sum(ourArray));

d3.select("#output").text(d3.median(ourArray));

d3.select("#output").text(d3.mean(ourArray));

d3.select("#output").text(ourArray.sort(d3.ascending));
d3.select("#output").text(ourArray.sort(d3.descending));

Data visualisation - D3

Data Intro - working with arrays - nest

D3’s nest function used to build an algorithm
transforms a flat array data structure into a hierarchical nested structure

function can be configured using the key function chained to nest

nesting allows elements in an array to be grouped into a hierarchical tree
structure
similar in concept to the group by option in SQL

nest allows multiple levels of grouping

result is a tree rather than a flat table

levels in the tree are defined by the key function

leaf nodes of the tree can be sorted by value

internal nodes of the tree can be sorted by key

Data visualisation - D3

Selections - intro

Selection is one of the key tasks required within D3 to manipulate and
visualise our data

simply allows us to target certain visual elements on a given page

Selector support is now standardised upon the W3C specification for the
Selector API
supported by all of the modern web browsers

its limitations are particularly noticeable for work with visualising data

Selector API only provides support for selector and not selection
able to select an element in the document

to manipulate or modify its data we need to implement a standard loop etc

D3 introduced its own selection API to address these issues and perceived
shortcomings
ability to select elements by ID or class, its attributes, set element IDs and class, and
so on…

http://www.w3.org/TR/selectors-api/

Data visualisation - D3

Selections - single element

select a single element within our page

now select the first <p> element on the page, and then allow us to modify as
necessary
eg; we could simply add some text to this element

selection could be a generic element, such as <p>
or a specific element defined by targeting its ID

use additional modifier functions, such as attr, to perform a given
modification on the selected element

also add or remove classes on the selected element

d3.select("p");

d3.select("p")
.text("Hello World");

//set an attribute for the selected element
d3.select("p").attr("foo");
//get the attribute for the selected element
d3.select("p").attr("foo");

//test selected element for specified class
d3.select("p").classed("foo")
//add a class to the selected element
d3.select("p").classed("goo", true);
//remove the specified class from the selected element
d3.select("p").classed("goo", function(){ return false; });

Data visualisation - D3

Selections - multiple elements

also select all of the specified elements using D3

use and implement multiple element selection
same as single selection pattern

also use the same modifier functions

allows us to modify each element’s attributes, style, class…

d3.selectAll("p")
.attr("class", "para");

Data visualisation - D3

Selections - iterating through a selection

D3 provides us with a selection iteration API
allows us to iterate through each selection

then modify each selection relative to its position

very similar to the way we normally loop through data

D3 selections are essentially like arrays with some enhancements
use the iterative nature of Selection API

d3.selectAll("p")
.attr("class", "para")
.each(function (d, i) {
 d3.select(this).append("h1").text(i);
});

d3.selectAll('p')
.attr("class", "para2")
.text(function(d, i) {
 return i;
});

Data visualisation - D3

Selections - performing sub-selection

for selections - often necessary to perform specific scope requests
eg: selecting all <p> elements for a given <div> element

both examples produce the same effect and output, but use very different
selection techniques
first example uses the CSS3, level-3, selectors

div > p is known as combinators in CSS syntax

//direct css selector (selector level-3 combinators)
d3.select("div > p")
 .attr("class", "para");

//d3 style scope selection
d3.select("div")
 .selectAll("p")
 .attr("class", "para");

Data visualisation - D3

Selections - combinators

Example combinators..

1. descendant combinator

uses the pattern of selector selector - describing loose parent-child
relationship

loose due to possible relationships - parent-child, parent-grandchild…

select the <p> element as a child of the parent <div> element
relationship can be generational

2. child combinator

uses same style of syntax, selector > selector
able to describe a more restrictive parent-child relationship between two
elements

finds <p> element if it is a direct child to the <div> element

d3.select("div p");

d3.select("div > p");

Data visualisation - D3

Selections - D3 sub-selection

sub-selection using D3’s built-in selection of child elements

a simple option to select an element, then chain another selection to get the
child element

this type of chained selection defines a scoped selection within D3
eg: selecting a <p> element nested within our selected <div> element

each selection is, effectively, independent

D3 API built around the inherent concept of function chaining
can almost be considered a Domain Specific Language for dynamically building
HTML/SVG elements

a benefit of chaining = easy to produce concise, readable code

var body = d3.select("body");

body.append("div")
 .attr("id", "div1")
 .append("p")
 .attr("class", "para")
 .append("h5")
 .text("this is a paragraph heading...");

Data visualisation - D3

Data Intro - page elements

generation of new DOM elements normally fits
either circles, rectangles, or some other visual form that represents the data

D3 can also create generic structural elements in HTML, such as a <p>
eg: we can append a standard p element to our new page

used D3 to select body element, then append a new <p> element with text
“new paragraph”

D3 supports chain syntax

allowed us to select, append, and add text in one statement

d3.select("body").append("p").text("sample text...");

Data visualisation - D3

Data Intro - page elements

d3
references the D3 object, access its built-in methods

.select("body")
accepts a CSS selector, returns first instance of the matched selector in the
document’s DOM

.selectAll()
NB: this method is a variant of the single select()
returns all of the matched CSS selectors in the DOM

.append("p")
creates specified new DOM element

appends it to the end of the defined select CSS selector

.text("new paragraph")
takes defined string, “new paragraph”

adds it to the newly created <p> DOM element

d3.select("body").append("p").text("sample text...");

Data visualisation - D3

Binding data - making a selection

choose a selector within our document
eg: we could select all of the paragraphs in our document

if the element we require does not yet exist
need to use the method enter()

we get new paragraphs that match total number of values currently available
in the dataset

akin to looping through an array

outputting a new paragraph for each value in the array

create new, data-bound elements using enter()
method checks the current DOM selection, and the data being assigned to it

if more data values than matching DOM elements
enter() creates a new placeholder element for the data value

then passes this placeholder on to the next step in the chain, eg: append()

data from dataset also assigned to new paragraphs

NB: when D3 binds data to a DOM element, it does not exist in the DOM
itself
it does exist in the memory

d3.select("body").selectAll("p");

d3.select("body").selectAll("p").data(dataset).enter().append("p").text("new paragraph");

Data visualisation - D3

Binding data - using the data

change our last code example as follows,

then load our HTML, we’ll now see dataset values output instead of fixed text

anytime in the chain after calling the data() method
we can then access the current data using d

also bind other things to elements with D3, eg: CSS selectors, styles…

chain the above to the end of our existing code
now bind an additional css style attribute to each <p> element

turning the font colour blue

extend code to include a conditional statement that checks the value of the
data
eg: simplistic striped colour option

DEMO - D3 basic elements

d3.select("body").selectAll("p").data(dataset).enter().append("p").text(function(d) { return d; });

.style("color", "blue");

.style("color", function(d) {
if (d % 2 == 0) {
return "green";
} else {
 return "blue";
}
});

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-basic-element

Image - D3 Basic Elements

D3 - basic elements

Data visualisation - D3

Drawing - intro - part 1

1. drawing divs

one of the easiest ways to draw a rectangle, for example, is with a HTML
<div>
an easy way to start drawing a bar chart for our stats

start with standard HTML elements, then consider more powerful option of
drawing with SVG

semantically incorrect, we could use <div> to output bars for a bar chart
use of an empty <div> for purely visual effect

using D3, add a class to an empty element using selection.attr()
method

2. setting attributes

attr() is used to set an HTML attribute and its value on an element

After selecting the required element in the DOM
assign an attributes as follows

.attr("class", "barchart")

Data visualisation - D3

Drawing - intro - part 2

use D3 to draw a set of bars in divs as follows

above sample outputs the values from our dataset with no space between
them
effectively as a bar chart of equal height

modify the height of each representative bar
by setting height of each bar as a function of its corresponding data value

eg: append the following to our example chain

make each bar in our chart more clearly defined by modifying style

var dataset = [1, 2, 3, 4, 5];

d3.select("body").selectAll("div")
 .data(dataset)
 .enter()
 .append("div")
 .attr("class", "bar");

.style("height", function(d) {
 return d + "px";
});

.style("height", function(d) {
 var barHeight = d * 3;
 return barHeight + "px";
});

Data visualisation - D3

Drawing - intro - part 3

1. drawing SVGs

properties of SVG elements are specified as attributes

represented as property/value pairs within each element tag

SVG elements exist in the DOM
we can still use D3 methods append() and attr()
create new HTML elements and set their attributes

2. create SVG

need to create an element for our SVG

allows us to draw and output all of our required shapes

variable effectively works as a reference
points to the newly created SVG object

allows us to use this reference to access this element in the DOM

DEMO - Drawing with SVG

<element property="value">...</element>

d3.select("body").append("svg");

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-basic-drawing

Image - D3 Basic Drawing

D3 - basic drawing

Data visualisation - D3

Drawing - SVG barchart - part 1

create a new barchart using SVG, need to set the required size for our SVG
output

then use D3 to create an empty SVG element, and add it to the DOM

instead of creating DIVs as before, we generate rects and add them to the
svg element.

//width & height
var w = 750;
var h = 200;

var svg = d3.select("body")
 .append("svg")
 .attr("width", w)
 .attr("height", h);

svg.selectAll("rect")
 .data(dataset)
 .enter()
 .append("rect")
 .attr("x", 0)
 .attr("y", 0)
 .attr("width", 10)
 .attr("height", 50);

Data visualisation - D3

Drawing - SVG barchart - part 2

this code selects all of the rect elements within svg
initially none, D3 still needs to select them before creating them

data() then checks the number of values in the specified dataset
hands those values to the enter method for processing

enter method then creates a placeholder
for each data value without a corresponding rect
also appends a rectangle to the DOM for each data value

then use attr method to set x, y, width, height values for each
rectangle

still only outputs a single bar due to an overlap issue

need to amend our code to handle the width of each bar
implement flexible, dynamic coordinates to fit available SVG width and height

visualisation scales appropriately with the supplied data

.attr("x", function(d, i) {
 return i * (w / dataset.length);
})

Data visualisation - D3

Drawing - SVG barchart - part 3

now linked the x value directly to the width of the SVG w
and the number of values in the dataset, dataset.length
the bars will be evenly spaced regardless of the number of values

if we have a large number of data values
bars still look like one horizontal bar

unless there is sufficient width for parent SVG and space between each bar

try to solve this as well by setting the bar width to be proportional
narrower for more data, wider for less data

now set each bar’s width
as a fraction of the SVG width and number of data points, minus our padding value

our bar widths and x positions scale correctly regardless of data values

var w = 750;
var h = 200;
var barPadding = 1;

.attr("width", w / dataset.length - barPadding)

Data visualisation - D3

Drawing - SVG barchart - part 4

encode our data as the height of each bar

our bar chart will size correctly, albeit from the top down
due to the nature of SVG

SVG adheres to a top left pattern for rendering shapes

to correct this issue
need to calculate the top position of our bars relative to the SVG

top of each bar expressed as a relationship
between the height of the SVG and the corresponding data value

bar chart will now display correctly from the bottom upwards

DEMO - Drawing with SVG - barcharts

.attr("height", function(d) {
 return d * 4;
});

.attr("y", function(d) {
 //height minus data value
 return h - d;
})

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-data-drawing-bar

Image - D3 Barcharts

D3 - drawing barcharts

Data visualisation - D3

Drawing - SVG barchart - part 5

1. add some colour

adding a colour per bar simply a matter of setting an attribute for the fill
colour

set many colours using the data itself to determine the colour

2. add text labels

also set dynamic text labels per bar, which reflect the current dataset

extend this further by positioning our text labels

then position them relative to the applicable bars, add some styling, colours…

DEMO - Drawing with SVG - barcharts, colour, and text labels

.attr("fill", "blue");

.attr("fill", function(d) {
 return "rgb(0, 0, " + (d * 10) + ")";
});

svg.selectAll("text")
.data(dataset)
.enter()
.append("text")

.attr("x", function(d, i) {
 return i * (w / dataset.length);
})
.attr("y", function(d, i) {
 return h - (d * 4);
});

.attr("font-family", "sans-serif")

.attr("font-size", "11px")

.attr("fill", "white");

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-github-commits-barchart

Image - D3 Barcharts

D3 - drawing barcharts with colour and text

Data visualisation - D3

Drawing - add interaction - listeners

event listeners apply to any DOM element for interaction
from a button to a <p> with the body of a HTML page

add a listener to this DOM element

above sample code selects the <p> element
then adds an event listener to that element

event listener is an anonymous function
listens for .on event for a specific element or group of elements

in our example,
on() function takes two arguments

<p>this is a HTML paragraph...</p>

d3.select("p")
 .on("click", function() {
 //do something with the element...
 });

Data visualisation - D3

Drawing - add interaction - update visuals

achieved by combining
event listener

modification of the visuals relative to changes in data

above code triggers a change to visuals for each call to the event listener

eg: change the colours
add call to fill() to update bar colours

DEMO - update bar colours

d3.select("p")
 .on("click", function() {

 dataset = [....];

 //update all of the rects
 svg.selectAll("rect")
 .data(dataset)
 .attr("y", function(d) {
 return h - yScale(d);
 });
 .attr("height", function(d) {
 return yScale(d);
 });
});

.attr("fill", function(d) {
 return "rgb(0, 0, " + (d * 10) + ")";
});

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-data-drawing-bar

Image - D3 Barcharts

D3 - drawing colour updates for barcharts

Data visualisation - D3

Drawing - add interaction - transitions

adding a fun transition in D3 is as simple as adding the following,

add this to above code chain to get a fun and useful transition in the data

animation reflects the change from the old to the new data

add a call to the duration() function
allows us to specify a time delay for the transition

quick, slow…we can specify each based upon time

chain the duration() function after transition()

if we want to specify a constant easing to the transition
use ease() with a linear parameter

other built-in options, including
circle - gradual ease in and acceleration until elements snap into place

elastic - best described as springy

bounce - like a ball bouncing, and then coming to rest…

.transition()

.transition().duration(1000)

.ease(linear)

Data visualisation - D3

Drawing - add interaction - transitions

add a delay using the delay() function

also set the delay() function dynamically relative to the data,

when passed an anonymous function
datum bound to the current element is passed into d
index position of that element is passed into i

in the above code example, as D3 loops through each element
delay for each element is set to i * 100
meaning each subsequent element will be delayed 100ms more than preceding
element

DEMO - transitions - interactive sort

.transition()

.delay(1000)

.duration(2000)

.transition()

.delay(function(d, i) {
return i * 100;
})
.duration(500)

http://linode4.cs.luc.edu/ancientlives/d3-github/example?type=d3-github-interactive-sort

Data visualisation - D3

Drawing - add interaction - adding values and elements

select all of the bars in our chart
we can rebind the new data to those bars

and grab the new update as well

if more new elements, bars in our example, than original length
use enter() to create references to those new elements that do not yet exist

with these reserved elements
we can use append() to add those new elements to the DOM

now updates our bar chart as well

now made the new rect elements
need to update all visual attributes for our rects
set x, and y position relative to new dataset length

set width and height based upon new xScale and yScale

calculated from new dataset length

var bars = svg.selectAll("rect")
 .data(dataset);

Data visualisation - D3

Drawing - add interaction - removing values and elements

more DOM elements than provided data values
D3’s exit selection contains references to those elements without specified data

exit selection is simply accessed using the exit() function

grab the exit selection

then transition exiting elements off the screen
for example to the right

then finally remove it

remove() is a special transition method that awaits until transition is
complete

then deletes element from DOM forever
to get it back, we’d need to rebuild it again

bars.exit()
.transition()
.duration(500)
.attr("x", w)
.remove();

Data visualisation - D3

Drawing - SVG scatterplot - intro

scatterplot allows us to visualise two sets of values on two different axes
one set of data against another

plot one set of data on x axis, and the other on the y axis

often create dimensions from our data
helps us define patterns within our dataset

eg: date against age, or age against fitness…

dimensions will also be represented relative to x and y axes

create our scatterplot using SVG
add our SVG to a selected element

Image - D3 Scatterplot

D3 - drawing a basic scatterplot

Data visualisation - D3

Drawing - SVG scatterplot - data

data for the scatterplot is normally stored as a multi-dimensional
representation
comparison x and y points

eg: we could store this data in a multi-dimensional array

in such a multi-dimensional array
inner array stores the comparison data points for our scatterplot

each inner array stores x and y points for scatterplot diagram

we can also stroe such data in many different structures
eg: JSON…

var dataset = [
 [10, 22], [33, 8], [76, 39], [4, 15]
];

Data visualisation - D3

Drawing - SVG scatterplot - create SVG

need to create an element for our SVG
allows us to draw and output all of our required shapes

appends to the body an SVG element
useful to encapsulate this new DOM element within a variable

variable effectively works as a reference
points to the newly created SVG object

allows us to use this reference to access element in the DOM

d3.select("body").append("svg");

var svg = d3.select("body").append("svg");

Data visualisation - D3

Drawing - SVG scatterplot - build scatterplot

as with our barchart, we can set the width and height for our scatterplot,

we will need to create circles for use with scatterplot instead of rectangles

corresponding to drawing circles
set cx, the x position value of the centre of the circle

set cy, the y position value of the centre of the circle

set r, the radius of the circle

//width & height
var w = 750;
var h = 200;

svg.selectAll('circle')
 .data(dataset)
 .enter()
 .append('circle');

Data visualisation - D3

Drawing - SVG scatterplot - adding circles

draw circles for scatterplot

outputs simple circle for each inner array within our supplied multi-
dimensional dataset

start to work with creating circle sizes relative to data quantities

set a dynamic size for each circle
representative of the data itself

modify the circle’s area to correspond to its y value

as we create SVG circles, we cannot directly set the area
so we need to calculate the radius r
then modify that for each circle

.attr('cx', function(d) {
 return d[0]; //get first index value for inner array
})
.attr('cy', function(d) {
 return d[1]; //get second index value for inner array
})
.attr('r', 5);

Data visualisation - D3

Drawing - SVG scatterplot - calculate dynamic area

assuming that d[1] is the original area value of our circles
get the square root and set the radius for each circle

instead of setting each circle’s radius as a static value
now use the following

use the JavaScript Math.sqrt() function to help us with this calculation

.attr('r', function(d) {
 return Math.sqrt(d[1]);
});

Data visualisation - D3

Drawing - SVG scatterplot - add colour

as with a barchart

also set a dynamic colour relative to a circle’s data

.attr('fill', function (d) {
 return 'rgb(125,' + (d[1]) + ', ' + (d[1] * 2) + ')';
});

Data visualisation - D3

Drawing - SVG scatterplot - add labels

start by adding text labels for our data
adding new text elements where they do not already exist

then set the text label itself for each circle
using the data values stored in each inner array

make the label easier to read
set x and y coordinates relative to data points for each circle

set some styles for the labels

//add labels for each circle
svg.selectAll('text')
 .data(dataset)
 .enter()
 .append('text')
 .text(function(d) {
 return d[0] + ', ' + d[1];//set each data point on the text label
 })
 .attr('x', function(d) {
 return d[0];
 })
 .attr('y', function(d) {
 return d[1];
 })
 .attr('font-family', 'serif')
 .attr('font-size', '12px')
 .attr('fill', 'navy');

Image - D3 Scatterplot

D3 - drawing a basic scatterplot 2

Data visualisation - D3

Drawing - SVG - scales

in D3, scales are defined as follows,

“Scales are functions that map from an input domain to an output range”

Bostock, M.

you can specify your own scale for the required dataset
eg: to avoid massive data values that do not translate correctly to a visualisation

scale these values to look better within you graphic

to achieve this result, you simply use the following pattern.
define the parameters for the scale function

call the scale function
pass a data value to the function

the scale function returns a scaled output value for rendering

also define and use as many scale functions as necessary for your
visualisation

important to realise that a scale has no direct relation to the visual output
it is a mathematical relationship

need to consider scales and axes
two separate, different concepts relative to visualisations

Data visualisation - D3

Drawing - SVG - domains and ranges

input domain for a scale is its possible range of input data values
in effect, initial data values stored in your original dataset

output range is the possible range of output values
normally use as the pixel representation of the data values

a personal consideration of the designer

normally set a minimum and maximum output range for our scaled data

scale function then calculates the scaled output
based upon original data and defined range for scaled output

many different types of scale available for use in D3

three primary types
quantitative

ordinal

time

quantitative scale types also include other built-in scale types

many methods available for the scale types

Data visualisation - D3

Drawing - SVG - building a scale

start building our scale in D3
use d3.scale with our preferred scale type

to use the scale effectively, we now need to set our input domain

then we set the output range for the scale

we can also chain these methods together

var scale = d3.scale.linear();

scale.domain([10, 350]);

scale.range([1, 100]);

var scale = d3.scale.linear()
 .domain([10, 350])
 .range([1, 100]);

Data visualisation - D3

Drawing - SVG - adding dynamic scales

we could pre-define values for our scale relative to a given dataset

makes more sense to abstract these values relative to the defined dataset

we can now use the D3 array functions to help us set these scale values
eg; find highest number in array dataset

returns highest value from the supplied array

getting minimum value in array works in the same manner
with d3.min() being called instead

now create a scale function for x and y axes

Y axis scale modifies above code relative to provided data, d[1]
range uses height instead of width

for a scatterplot we can use these values to set cx and cy values

d3.max(dataset, function(d) {
 return d[0];
});

var scaleX = d3.scale.linear()
 .domain([0, d3.max(dataset, function(d) { return d[0]; })])
 .range([0, w]);//set output range from 0 to width of svg

Image - D3 Scatterplot

D3 - add axis

Data visualisation - D3

Drawing - SVG - adding dynamic scales

a few data visualisation examples
Tests 1

Tests 2

http://linode4.cs.luc.edu/ancientlives/d3-github/
http://linode4.cs.luc.edu/ancientlives/data-visualisation/dhcs/

Data Visualisation

general examples

Sample dashboards and visualisations

gaming dashboard

schools and education

students and grades

D3 examples

Example datasets

Chicago data portal

Article example

dashboard designs

replace jQuery with D3

https://samples.dundas.com/Dashboard/d13a1600-3171-4d18-841a-b4e67f21ebe4?e=false&vo=viewonly
https://samples.dundas.com/Dashboard/9a59b5cc-8999-4896-acf1-3f1f594f8d6c?e=false&vo=viewonly
https://samples.dundas.com/Scorecard/6badb7c0-903f-496e-a3b0-7cfcf7b8de08?e=false&vo=viewonly
https://github.com/d3/d3/wiki/Gallery
https://data.cityofchicago.org/
http://designrfix.com/design/dashboard-design
http://blog.webkid.io/replacing-jquery-with-d3/

Data Visualisation

projects examples

A few examples from recent projects,

GitHub API tests

check JSON return

early test examples

metrics test examples

http://linode4.cs.luc.edu/ancientlives/metrics/dashboard.php
http://linode4.cs.luc.edu/ancientlives/js/jquery/literal_include/test-jsonp5.html
http://linode4.cs.luc.edu/ancientlives/data-visualisation/dhcs/
https://luc-metrics.herokuapp.com/projects/

