
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 4

Dr Nick Hayward

Project outline & mockup assessment

Course total = 15%

begin outline and design of a web application
built from scratch
HTML5, CSS…

builds upon examples, technology outlined during first part of semester

purpose, scope &c. is group’s choice

NO blogs, to-do lists, note-taking…
chosen topic requires approval

presentation should include mockup designs and concepts

Project mockup demo

Assessment will include the following:

brief presentation or demonstration of current project work
~ 5 to 10 minutes per group

analysis of work conducted so far

presentation and demonstration
outline current state of web app concept and design
show prototypes and designs

due Monday 10th February 2020 @ 4.15pm

CSS Basics - selectors

selectors are a crucial part of working with CSS, JS…

basic selectors such as

above ruleset adds basic styling to our paragraphs
sets the text colour to HEX value 444

simple and easy to apply
applies the same properties and values to all paragraphs

specificity requires classes, pseudoclasses…

 p {
 color: #444;
 }

CSS Basics - classes

add a class attribute to an element, such as a <p>
can help us differentiate elements

also add a class to any DOM element
e.g. add different classes to multiple <p> elements

we can now select our paragraphs by class name within the DOM

then apply a ruleset for each class

style this class for a specific element

style all elements with the class p1, and not just <p> elements

 <p class="p1">paragraph one...</p>
 <p class="p2">paragraph two...</p>

 p.p1 {
 color: #444;
 }

 .p1 {
 color: #444;
 }

CSS Basics - pseudoclasses

add a class to links or anchors, styling all links with the same
ruleset

we might also want to add specific styles for different link states

styling links with a different colour
e.g. whether a link has already been used or not

visited is a CSS pseudoclass applied to the <a> element

browser implicitly adds this pseudoclass for us, we add style

pseudoclass for link element, <a>, hover

a {
 color: blue;
 }

a:visited {
 color: red;
 }

a:hover {
 color: black;
 text-decoration: underline;
}

CSS Basics - complex selector - part 1

our DOM will often become more complicated and detailed

depth and complexity will require more complicated selectors as
well

lists and their list items are a good example

two lists, one unordered and the other ordered

style each list, and the list items using rulesets

 unordered first
 unordered second
 unordered third

 ordered first
 ordered second
 ordered third

ul {
 border: 1px solid green;
}
ol {
 border: 1px solid blue;
}

Demo - Complex Selectors - Part 1

Demo - Complex Selectors Part 1

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/

CSS Basics - complex selector - part 2

add a ruleset for the list items,
applying the same style properties to both types of lists

more specific to apply a ruleset to each list item for the different
lists

also be useful to set the background for specific list items in each
list

pseudoclass of nth-child to specify a style for the second, fourth
etc child in the list

ul li {
 color: blue;
}
ol li {
 color: red;
}

li:first-child {
 background: #bbb;
}

li:nth-child(2) {
 background: #ddd;
}

Demo - Complex Selectors - Part 2

Demo - Complex Selectors Part 2

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/

CSS Basics - complex selector - part 3

style odd and even list items to create a useful alternating pattern

select only certain list items, or rows in a table etc
e.g. every fourth list item, starting at the first one

for even and odd children we’re using the above with convenient
shorthand

other examples include
last-child
nth-last-child()
many others…

li:nth-child(odd) {
 background: #bbb;
}
li:nth-child(even) {
 background: #ddd;
}

li:nth-child(4n+1) {
 background: green;
}

Demo - CSS Complex Selectors - Part 3

Demo - Complex Selectors Part 3

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/

CSS Basics - cascading rules - part 1

CSS, or cascading style sheets, employs a set of cascading rules

rules applied by each browser as a ruleset conflict arises
e.g. issue of specificity

the more specific rule, the class, will take precedence

issue of possible duplication in rulesets

cascading rules state the later ruleset will be the one applied
blue heading instead of black…

p {
 color: blue;
 }
p.p1 {
 color: red;
 }

h3 {
 color: black;
}

h3 {
 color: blue;
}

CSS Basics - cascading rules - part 2

simple styling and rulesets can quickly become compounded and
complicated

different styles, in different places, can interact in complex ways

a powerful feature of CSS
can also create issues with logic, maintenance, and design

three primary sources of style information that form this cascade

1. default styles applied by the browser for a given markup language *
e.g. colours for links, size of headings…

2. styles specific to the current user of the document * often affected by
browser settings, device, mode…

3. styles linked to the document by the designer * external file, embedded,
and as inline styles per element

CSS Basics - cascading rules - part 3

basic cascading nature creates the following pattern
browser’s style will be default

user’s style will modify the browser’s default style

styles of the document’s designer modify the styles further

CSS Basics - inheritance

CSS includes inheritance for its styles

descendants will inherit properties from their ancestors

style an element
descendants of that element within the DOM inherit that style

p is a descendant of body in the DOM
inherits background colour of the body

this characteristic of CSS is an important feature
helps to reduce redundancy and repetition of styles

useful to maintain outline of document’s DOM structure

most styles follow this pattern but not all

margin, padding, and border rules for block-level elements not

inherited

body {
 background: blue;
}
p {
 color: white;
}

Video - CSS and Fonts

Typography considerations - part 1

Typography - up to 2:13

Source - Typography - YouTube

Beginning Graphic Design: TypographyBeginning Graphic Design: Typography

https://youtu.be/sByzHoiYFX0
https://www.youtube.com/watch?v=sByzHoiYFX0

CSS Basics - fonts - part 1

fonts can be set for the body or within an element’s specific
ruleset

we need to specify our font-family,

value for the font-family property specifies preferred and fall-back
fonts
Times New Roman, then the browser will try Georgia and Serif

"" - quotation marks for names with spaces…

n.b. "" added due to CSS validator requesting this standard - it’s believed
to be a legacy error with the validator…

body {
font-family: "Times New Roman", Georgia, Serif;
}

CSS Basics - fonts - part 2

useful to be able to modify the size of our fonts as well

set base font size to 100% of font size for a user’s web browser

scale our other fonts relative to this base size
CSS absolute size values, such as x-large
font sizes relative to the current context, such as larger
em are meta-units, which represent a multiplier on the current font-size
relative to current element for required font size

1.5em of 12px is effective 18px

em font-size scales according to the base font size
modify base font-size, em sizes adjust

try different examples at
W3 Schools - font-size

body {
 font-size: 100%;
}
h3 {
 font-size: x-large;
}
p {
 font-size: larger;
}
p.p1 {
 font-size: 1.1em;
}

http://www.w3schools.com/cssref/pr_font_font-size.asp

Demo - CSS Fonts

Demo - CSS Fonts

JSFiddle - CSS Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo6/
https://jsfiddle.net/ancientlives/em4ot8zt/

CSS Basics - fonts - part 3

rem unit for font sizes

size calculated against root of document

element font-size will be root size * rem size
e.g. body font-size is currently 16px

rem will be 16 * 1.5

body {
 font-size: 100%;
}
p {
 font-size: 1.5rem;
}

CSS Basics - custom fonts

using fonts and CSS has traditionally been a limiting experience

reliant upon the installed fonts on a user’s local machine

JavaScript embedding was an old, slow option for custom fonts

web fonts are a lot easier

Google Fonts
from the font options, select
required fonts
add a <link> reference for the font to our HTML document
then specify the fonts in our CSS

font-family: 'Roboto';

https://www.google.com/fonts

Demo - CSS Custom Fonts

Demo - CSS Custom Fonts

JSFiddle - CSS Custom Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo7/
https://jsfiddle.net/ancientlives/o621f2fj/

Video - CSS and Fonts

Typography considerations - part 2

Typography - up to 3:33

Source - Typography - YouTube

Beginning Graphic Design: TypographyBeginning Graphic Design: Typography

https://youtu.be/sByzHoiYFX0
https://www.youtube.com/watch?v=sByzHoiYFX0

CSS Basics - reset options

to help us reduce browser defaults, we can use a CSS reset

reset allows us to start from scratch

customise aspects of the rendering of our HTML documents in
browsers

often considered a rather controversial option

considered controversial for the following primary reasons
accessibility

performance

redundancy

use resets with care

notable example of resets is Eric Meyer
discussed reset option in May 2007 blog post

resets often part of CSS frameworks…

http://meyerweb.com/eric/tools/css/reset/

Demo - CSS Reset - Before

Browser default styles are used for

<h1>, <h3>, and <p>
Demo - CSS Reset Before

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo8/

Demo - CSS Reset - After

Browser resets are implemented using the Eric
Meyer stylesheet.

Demo - CSS Reset After

http://meyerweb.com/eric/tools/css/reset/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo9/

CSS - a return to inline styles

inline styles are once more gaining in popularity
helped by the rise of React &c.

for certain web applications they are now an option
allow us to dynamically maintain and update our styles

their implementation is not the same as simply embedding styles
in HTML
dynamically generated

can be removed and updated

can form part of our maintenance of the underlying DOM

inherent benefits include
no cascade

built using JavaScript

styles are dynamic

http://facebook.github.io/react/

CSS - against inline styles

CSS is designed for styling
this is the extreme end of the scale - in effect, styling is only done with
CSS

abstraction is a key part of CSS
by separating out concerns, i.e. CSS for styling, our sites are easier to
maintain

inline styles are too specific
again, abstraction is the key here

some styling and states are easier to represent using CSS
psuedoclasses etc, media queries…

CSS can add, remove, modify classes
dynamically update selectors using classes

CSS grid layout - part 1

intro

grid designs for page layout, components…
increasingly popular over the last few years

useful for creating responsive designs

quick and easy to layout a scaffolding framework for our
structured content

create boxes for our content
then position them within our grid layout

content can be stacked in a horizontal and vertical manner
creating most efficient layout for needs of a given application

another benefit of CSS grids is that they are framework and
project agnostic
thereby enabling easy transfer from one to another

concept is based upon a set number of columns per page with a
width of 100%

columns will increase and decrease relative to the size of the
browser window

also set break points in our styles
helps to customise a layout relative to screen sizes, devices, aspect
ratios…

helps us differentiate between desktop and mobile viewers

Image - Grid Layout

Grid Layout - Columns and rows

CSS grid layout - part 2

grid.css

build a grid based upon 12 columns
other options with fewer columns as well

tend to keep our grid CSS separate from the rest of the site
maintain a CSS file just for the grid layout

helps abstract the layout from the remaining styles
makes it easier to reuse the grid styles with another site or application

add a link to this new stylesheet in the head element of our pages

or

ensure padding and borders are included in total widths and
heights for an element
reset box-sizing property to include the border-box
resetting box model to ensure padding and borders are included

<link rel="stylesheet" type="text/css" href="assets/styles/grid.css">

<link rel="stylesheet" href="assets/styles/grid.css">

* {
box-sizing: border-box;
}

CSS grid layout - example - part 3

grid.css

set some widths for our columns, 12 in total
each representing a proportion of the available width of a page

from a 12th to the full width of the page

classes allow us to set a column span for a given element
from 1 to 12 in terms of the number of grid columns an element may
span

.col-1 {width: 8.33%;}

.col-2 {width: 16.66%;}

.col-3 {width: 25%;}

.col-4 {width: 33.33%;}

.col-5 {width: 41.66%;}

.col-6 {width: 50%;}

.col-7 {width: 58.33%;}

.col-8 {width: 66.66%;}

.col-9 {width: 75%;}

.col-10 {width: 83.33%;}

.col-11 {width: 91.66%;}

.col-12 {width: 100%;}

CSS grid layout - example - part 4

grid.css

then set some further styling for each abstracted col- class

create columns by wrapping our content elements into rows

each row always needs 12 columns

[class*="col-"] {
 position: relative;
 float:left;
 padding: 20px;
 border: 1px solid #333;
}

<div class="row">
 <div class="col-6">left column</div>
 <div class="col-6">right column</div>
</div>

CSS grid layout - example - part 5

grid.css

due to the initial CSS of float left, each column is floated to the left

columns are interpreted by subsequent elements in the hierarchy
as non-existent
initial placement will reflect this design

prevent this issue in layout, add the following CSS to grid
stylesheet

benefit of the clearfix, clear: both
make row stretch to include columns it contains

without the need for additional markup

DEMO - Grid Layout 1 - no gutters

.row:before, .row:after {
 content: "";
 clear: both;
 display: block;
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/grid/

Image - Grid Layout 1

Grid Layout - No Gutters

CSS grid layout - example - part 6

grid.css

add gutters to our grid to help create a sense of space and
division in the content

simplest way to add a gutter to the current grid css is to use
padding
rows can use padding, for example

issue with simply adding padding to the columns
margins are left in place, next to each other

column borders next to each with no external column gutter

fix this issue by targeting columns that are a sibling to a preceding
column

means we do not need to modify the first column, only subsequent
siblings

.row {
 padding: 5px;
}

[class*="col-"] + [class*="col-"] {
 margin-left: 1.6%;
}

Image - Grid Layout 2

Grid Layout - Gutters Overflow

CSS grid layout - part 7

grid.css

to fix this issue we recalculate permitted % widths for our columns
in the CSS
we now have % widths as follows

DEMO - Grid Layout 2 - gutters

.col-1 {width: 6.86%;}

.col-2 {width: 15.33%;}

.col-3 {width: 23.8%;}

.col-4 {width: 32.26%;}

.col-5 {width: 40.73%;}

.col-6 {width: 49.2%;}

.col-7 {width: 57.66%;}

.col-8 {width: 66.13%;}

.col-9 {width: 74.6%;}

.col-10 {width: 83.06%;}

.col-11 {width: 91.53%;}

.col-12 {width: 100%;}

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/grid2-gutters/

Image - Grid Layout 3

Grid Layout - Gutters

CSS grid layout - part 8

media queries

often need to consider a mobile-first approach

introduction of CSS3, we can now add media queries

modify specified rulesets relative to a given condition
eg: screen size for a desktop, tablet, and phone device

media queries allow us to specify a breakpoint in the width of the
viewport
will then trigger a different style for our application

could be a simple change in styles
such as colour, font etc

could be a modification in the grid layout
effective widths for our columns per screen size etc…

gutters need to be removed
specifying widths of 100% for our columns

@media only screen and (max-width: 900px) {
 [class*="col-"] {
 width: 100%;
 }
}

[class*="col-"] + [class*="col-"] {
 margin-left:0;
}

Image - Grid Layout 4

Grid Layout - Media Queries

Video - CSS grid

Layout considerations

Layout and composition - up to 2:45

Source - Layout and composition - YouTube

Beginning Graphic Design: Layout & CompositionBeginning Graphic Design: Layout & Composition

https://youtu.be/a5KYlHNKQB8
https://www.youtube.com/watch?v=a5KYlHNKQB8

CSS3 Grid - intro

gid layout with CSS is useful for structure and organisation
applied to HTML page

usage similar to table for structuring data

in its basic form
enables developers to add columns and rows to a page

grid layout also permits more complex, interesting layout options
e.g. overlap and layers…

further information on MDN website,
MDN - CSS Grid Layout

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

CSS3 Grid - general concepts & usage

grid may be composed of rows and columns
thereby forming an intersecting set of horizontal and vertical lines

elements may be added to the grid with reference to this
structured layout

Grid layout in CSS includes the following
general features,

additional tracks for content
option to create more columns and rows as needed to fit dynamic
content

control of alignment
align a grid area or overall grid

control of overlapping content
permit partial overlap of content

an item may overlap a grid cell or area

placement of items - explicit and implicit
precise location of elements &c.

use line numbers, names, grid areas &c.

variable track sizes - fixed and flexible, e.g.
specify pixel size for track sizes

or use flexible sizes with percentages or new fr unit

CSS3 Grid - grid container

define an element as a grid container using
display: grid or display: inline-grid

any children of this element become grid items

e.g.

we may also define other, child nodes as a grid container
any direct child nodes to a grid container are now defined as grid items

.wrapper {
 display: grid;
}

CSS3 Grid - what is a grid track?

rows and columns defined with
grid-template-rows and grid-template-columns properties

in effect, these define grid tracks

as MDN notes,
“a grid track is the space between any two lines on the grid.”"

(https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout)

so, we may create both row and column tracks, e.g.

wrapper class now includes three defined columns of width 200px
thereby creating three tracks

n.b. a track may be defined using any valid length unit, not just
px…

.wrapper {
 display: grid;
 grid-template-columns: 200px 200px 200px;
}

CSS3 Grid - fr unit for tracks - part 1

CSS Grid now introduces an additional length unit for tracks, fr
fr unit represents fractions of the space available in the current
grid container
e.g.

we may also apportion various space to tracks, e.g.

creates three tracks in the grid
but overall space effectively now occupies four parts

two parts for 2fr, and one part each for remaining two 1fr

.wrapper {
 display: grid;
 grid-template-columns: 1fr 1fr 1fr;
}

.wrapper {
 display: grid;
 grid-template-columns: 2fr 1fr 1fr;
}

CSS3 Grid - fr unit for tracks - part 2

we may also be specific in this sub-division of parts in tracks, e.g.

first track will occupy a width of 200px
remaining two tracks will each occupy 1 fraction unit

.wrapper {
 display: grid;
 grid-template-columns: 200px 1fr 1fr;
}

CSS3 Grid - repeat() notation for fr - part 1

for larger, repetitive grids, easier to use repeat()
helps define multiple instances of the same track

e.g.

this creates four separate tracks - each defined as 1fr unit’s width

.wrapper {
 display: grid;
 grid-template-columns: repeat(4, 1fr);
}

CSS3 Grid - repeat() notation for fr - part 2

repeat() notation may also be used as part of the track definition
e.g.

this example will create
one track of 200px width

then four tracks of 1fr width

and finally a single track of 100px width

repeat() may also be used with multiple track definitions
thereby repeating multiple times

e.g.

this will now create eight tracks
the first four of width 1fr
and the remaining four of 2fr

.wrapper {
 display: grid;
 grid-template-columns: 200px repeat(4, 1fr) 100px;
}

.wrapper {
 display: grid;
 grid-template-columns: repeat(4, 1fr 2fr);
}

CSS3 Grid - implicit and explicit grid creation

in the above examples
we simply define tracks for the columns

and CSS grid will then apportion content to required rows

we may also define an explicit grid of columns and rows
e.g.

this slightly modifies an implicit grid to ensure each row is 200px
tall

.wrapper {
 display: grid;
 grid-template-columns: repeat(2 1fr);
 grid-auto-rows: 150px;
}

CSS3 Grid - track sizing

a grid may require tracks with a minimum size
and the option to expand to fit dynamic content

e.g. ensuring a track does not collapse below a certain height or
width
and that it has the option to expand as necessary for the content…

CSS Grid provides a minmax() function, which we may use with
rows
e.g.

ensures each row will occupy a minimum of 150px in height
still able to stretch to contain the tallest content

whole row will expand to meet the auto height requirements

thereby affecting each track in the row

.wrapper {
 display: grid;
 grid-template-columns: repeat(2 1fr);
 grid-auto-rows: minmax(150px, auto);
}

CSS3 Grid - grid lines

a grid is defined using tracks

and not lines in the grid

created grid also helps us with positioning by providing numbered
lines

e.g. in a three column, two row grid we have the following,
four lines for the three vertical columns

three lines for the two horizontal rows

such lines start at the left for columns, and at the top for rows

n.b. line numbers start relative to written script
e.g left to right for western, right to left for arabic…

CSS3 Grid - positioning against lines

when we place an item in a grid
we use these lines for positioning, and not the tracks

reflected in usage of
grid-column-start, grid-column-end, grid-row-start, and grid-
row-end properties.

items in the grid may be positioned from one line to another
e.g. column line 1 to column line 3

n.b. default span for an item in a grid is one track,
e.g. define column start and no end - default span will be one track…

e.g.

.content1 {
 grid-column-start: 1;
 grid-column-end: 4;
 grid-row-start: 1;
 grid-row-end: 3;
}

CSS3 Grid - grid cell & grid area

grid cell

a cell is the smallest unit on the defined grid layout

it is conceptually the same as a cell in a standard table

as content is added to the grid, it will be stored in one cell

grid area

we may also store content in multiple cells
thereby creating grid areas

grid areas must be rectangular in shape

e.g. a grid area may span multiple row and column tracks for
required content

CSS3 Grid - add some gutters

gutters may be created using the gap property
available for either column or row

column-gap and row-gap
e.g.

n.b. any space used for gaps will be determined prior to assigned
space for fr tracks

.wrapper {
 display: grid;
 grid-template-columns: repeat(4, 1fr 2fr);
 column-gap: 5px;
 row-gap: 10px;
}

CSS3 Grid - working examples

grid basic - page zones and groups

grid basic - article style page

grid layout - articles with scroll

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/

Video - CSS grid

Grid and layouts

Layout and Composition: Grid Variations

Source - Layout and Composition - YouTube

Layout and composition tutorial: Grid variations | lynda.comLayout and composition tutorial: Grid variations | lynda.com

https://www.youtube.com/watch?v=7YcVzUY-A78
https://www.youtube.com/watch?v=7YcVzUY-A78

CSS3 Grid - sample layouts

intro

grid layout enables more complex and interesting layout options
overlap, layers…

sample layouts using CSS grid structure
common layout options and designs

useful repetition of design

modify base layouts for various site requirements

sample layouts
responsive layouts

auto placement for dynamic content and media

platform agnostic designs

useful with SPA, SVG, async patterns &c.

CSS3 Grid - responsive layout

intro

display a layout with a variety of patterns and structures, e.g.
single column for a phone

add a sidebar for a tablet of lower window resolution

full width view with dual sidebars &c.

use responsive designs and structures for various games, media
playback…

responsive works with variety of markup
e.g. transform SVG designs

CSS3 Grid - responsive layout

page structure

start with a sample page structure for a HTML page

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>CSS Grid - Responsive Layout</title>
 <link rel="stylesheet" type="text/css" href="./assets/style.css">
 </head>
 <body>
 <div class="wrapper">
 ...
 </div>
 </body>
</html>

CSS3 Grid - responsive layout

page structure - HTML5

add some HTML5 markup for a header, navigation, footer,
and some main content

demo - basic responsive

<div class="wrapper">
 <header class="site-header">
 <h3>Spire & the Signpost</h3>
 <h5>Shine through the gloom, and point to the stars...</h5>
 </header>
 <nav class="site-nav">

 Home
 Charts
 Data
 Views

 </nav>
 <!-- use aside for tangentially related content for parent section... -->
 <aside class="content-side">
 <header>
 <h5>sidebar...</h5>
 </header>
 </aside>
 <main class="content">
 <article class="content-article">
 <header class="article-header">
 <h5>Welcome</h5>
 </header>
 <p>...</p>
 </article>
 </main>
 <section class="site-links">
 <h6>social links...</h6>
 </section>
 <footer class="site-footer">
 <h6>footer...</h6>
 </footer>
</div>

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v1/

CSS3 Grid - responsive layout

CSS and structure - part 1

for the page structure
need to define some template areas for our grid in the CSS

e.g.

use such template area names
defined with the grid-area property

define a layout for the overall page or part of a page

/* CONTENT */
.content {
 grid-area: content;
}

CSS3 Grid - responsive layout

CSS and structure - part 2

template areas may then be used with the parent for the grid
structure
e.g. wrapper for the overall page

wrapper class will display as a grid
with a gap between each area of the grid

has a single column in this example

includes the required order for the grid areas

.wrapper {
 display: grid;
 grid-gap: 10px;
 grid-template-areas:
 "site-header"
 "site-nav"
 "content-side"
 "content"
 "site-links"
 "site-footer"
}

CSS3 Grid - responsive layout

define media query

current example would be suitable for a collapsed phone view
single column view

will also render for other resolutions and devices

then add a media query for alternative layouts and displays
may be triggered using a check of current width for screen

check width of window…

/* min 700 */
@media (min-width: 700px) {
 .wrapper {
 grid-template-columns: 1fr 3fr;
 grid-template-areas:
 "site-header site-header"
 "site-nav site-nav"
 "content-side content"
 "site-links site-footer"
 }
}

CSS3 Grid - responsive layout

specific media query

add further media queries to handle various rendering
requirements
e.g. add height property to fix footer at bottom of page

specify height of current viewport using a relative unit, vh
add grid-template-rows to define known heights for three of
the four rows

add a variant height for the main content
main content is only given a height corresponding to available space in
viewer window

height achieved using the calc() function

demo - responsive with specific media query

@media (min-width: 700px) {
 .wrapper {
 grid-template-columns: 1fr 3fr;
 grid-template-rows: 120px 60px calc(98vh - 240) 60px;
 grid-template-areas:
 "site-header site-header"
 "site-nav site-nav"
 "content-side content"
 "site-links site-footer";
 height: 98vh;
 }
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v2/

CSS3 Grid - responsive layout

relative lengths

use relative lengths and calculations for CSS property values

for example,
vw - variable width relative to 1% of width of current viewport

vh - variable height relative to 1% of height of current viewport

vmin - relative to 1% of viewport’s smaller dimension

vmax - relative to 1% of viewport’s larger dimension

CSS3 Grid - responsive layout

sample updates - part 1

after testing this type of responsive layout
we might add various updates

e.g. create a parent banner area for a header, user login, site search,
and site nav

helps manage layout and relative sizes of banner content
regardless of page width and height

.banner {
 grid-area: site-banner;
 display: grid;
 grid-template-columns: auto 300px;
 grid-template-rows: 120px 60px;
 grid-template-areas:
 "site-header banner-extras"
 "site-nav site-nav";
}

CSS3 Grid - responsive layout

sample updates - part 2

banner-extras might be styled as follows,

use of a child grid helps us manage fixed places within the parent
banner area

.banner-extras {
 grid-area: banner-extras;
 display: grid;
 grid-template-areas:
 "site-user"
 "site-search";
 padding: 5%;
}

CSS3 Grid - responsive layout

sample updates - part 3

update our current media query for a min-width of 900px

demo - responsive layout - part 1

demo - responsive layout - part 2

/* min 900 */
@media (min-width: 900px) {
 .wrapper {
 grid-template-areas:
 "site-banner site-banner"
 "content-side content"
 "site-links site-footer";
 height: 98vh;
 grid-template-columns: 250px 3fr;
 grid-template-rows: 180px auto 60px;
 }
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v4/

CSS3 Grid - auto placement

dynamic content and media - part 1

also use CSS grid with Flexbox to create content layouts
e.g. similar to placing cards in the UI

we might create a layout to dynamically render images for a photo
album
or a series of products in a brochure &c.

start by defining a simple list with various list items

<ul class="items">
 One
 Two
 Three
 Four
 Five
 Six
 Seven
 Eight
 Nine

CSS3 Grid - auto placement

dynamic content and media - part 2

then render these list items in flexible columns within our grid
layout
define a minimum size

then ensure they expand to equally fill available space

ensures rendered layout includes equal width columns regardless
of available content

and render individual items using flexbox

demo - dynamic content - part 1

demo - dynamic content - part 2

/* content items */
.items {
 display: grid;
 grid-gap: 5px;
 grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
 list-style: none;
}

.items li {
 border: 1px solid #3b8eb4;
 display: flex;
 flex-direction: column;
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v2/

CSS3 Grids - fun layout

a game board

also use a grid layout for internal uses
e.g. design a game board

basic HTML list use for 3x3 game board
each list item as a square on the board

<main class="content">
 <ul class="items">

 <h5>One</h5>

 <h5>Two</h5>

 <h5>Three</h5>

 <h5>Four</h5>

 <h5>Five</h5>

 <h5>Six</h5>

 <h5>Seven</h5>

 <h5>Eight</h5>

 <h5>Nine</h5>

</main>

CSS3 Grids - fun layout

a game board - part 2

then create the grid for the content class

we can embed this content area within other grids
then add child items for the grid content itself

content container will be aligned and justified to the centre of the
parent

each child column will occupy the same proportion of available
space
using grid-template-columns: 1fr

each item will also be aligned to the centre of the available space

properties such as padding and border are optional
e.g. dictated by aesthetic requirements…

/* CONTENT */
.content {
 grid-area: content;
 display: grid;
 grid-template-areas:
 "items";
 grid-template-columns: 1fr;
 align-self: center;
 justify-self: center;
 align-items: center;
 padding: 50px;
 border: 1px solid #aaa;
}

CSS3 Grids - fun layout

grid items for the board - part 1

each square will be a child list item to the parent ul
e.g. style ul as follows

.items {
 grid-area: items;
 display: grid;
 grid-gap: 10px;
 grid-template-columns: repeat(3, 150px);
 grid-template-rows: 150px 150px 150px;
}

CSS3 Grids - fun layout

grid items for the board - part 2

then style each item, which creates the squares on the game
board

styling is for aesthetic purposes
e.g. to render a list item as a square without the default list style

also define an alternating colour scheme for our squares, e.g.

demo - Fun with Squares

.items li {
 margin: 0;
 list-style-type: none;
 border: 1px solid #333;
 background-color: #333;
 color: #fff;
 padding: 10%;
}

.items li:nth-child(even) {
 border: 1px solid #ccc;
 background-color: #ccc;
 color: #333;
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/games/basic-squares/v5/

CSS3 Grid - structure and layout

fun exercise

Choose one of the following app examples,

sports website for latest scores and updates
e.g. scores for current matches, statistics, team data, player info &c.

shopping website
product listings and adverts, cart, reviews, user account page &c.

restaurant website
introductory info, menus, sample food images, user reviews &c.

Then, consider the following

use of a grid to layout your example pages
where is it being used?

why is it being used for a given part of the UI?

how is the defined grid layout working with the box model?

rendering of box model in the main content relative to grid usage
i.e. box model updates due to changes in content

Demos

CSS Basics - Add a Class

CSS - Complex Selectors Part 1

CSS - Complex Selectors Part 2

CSS - Complex Selectors Part 3

CSS - Fonts
CSS Fonts

CSS Custom Fonts

CSS Reset Before

CSS Reset After

CSS - Grids
grid basic - page zones and groups

grid basic - article style page

grid layout - articles with scroll

grid layout - basic responsive

grid layout - responsive with specific media query

grid layout - responsive layout - part 1

grid layout - responsive layout - part 2

grid layout - dynamic content - part 1

grid layout - dynamic content - part 2

grid layout - Fun with Squares

JSFiddle tests - CSS
CSS Fonts

CSS Custom Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-basics/v0.2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo7/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo8/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo9/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/games/basic-squares/v5/
https://jsfiddle.net/ancientlives/em4ot8zt/
https://jsfiddle.net/ancientlives/o621f2fj/

Resources

Google Web Fonts

MDN - CSS Box Model

MDN - CSS3 Grid

MDN - CSS Selectors

W3 Schools - CSS Grid View

https://fonts.google.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://www.w3schools.com/css/css_rwd_grid.asp

