Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 4

Dr Nick Hayward

Project outline & mockup assessment

Course total = 15%

= begin outline and design of a web application

e built from scratch
o HTML5, CSS..

e builds upon examples, technology outlined during first part of semester
e purpose, scope &c. is group’s choice

o NO blogs, to-do lists, note-taking...
o chosen topic requires approval

e presentation should include mockup designs and concepts

Project mockup demo

Assessment will include the following:

= Dbrief presentation or demonstration of current project work
o ~5to 10 minutes per group
e analysis of work conducted so far

e presentation and demonstration
o outline current state of web app concept and design
o show prototypes and designs

e due Monday 10th February 2020 @ 4. 15pm

CSS Basics - selectors

= selectors are a crucial part of working with CSS, JS..
= basic selectors such as

p{
color: #444;

}

= above ruleset adds basic styling to our paragraphs
o sefls the text colour to HEX value 444

= simple and easy to apply
o applies the same properties and values to all paragraphs

m specificity requires classes, pseudoclasses...

CSS Basics - classes

= add a class attribute to an element, such as a <p>
e can help us differentiate elements

= also add a class to any DOM element
e e.g. add different classes to multiple <p> elements

<p class="p1l">paragraph one...</p>
<p class="p2">paragraph two...</p>

= we can now select our paragraphs by class name within the DOM
= then apply a ruleset for each class
= style this class for a specific element

p.pl {
color: #444;

}
= style all elements with the class p1, and not just <p> elements

.p1 {
color: #444;

}

CSS Basics - pseudoclasses

= add a class to links or anchors, styling all links with the same
ruleset

= we might also want to add specific styles for different link states

= styling links with a different colour
o e.g. whether a link has already been used or not

a{

color: blue;

}

a:visited {
color: red;

}

= visitedis a CSS pseudoclass applied to the <a> element
= browser implicitly adds this pseudoclass for us, we add style

a:hover {
color: black;
text-decoration: underline;

}

= pseudoclass for link element, <a>, hover

CSS Basics - complex selector - part 1

= our DOM will often become more complicated and detailed

= depth and complexity will require more complicated selectors as
well

= |ists and their list items are a good example

unordered first</1i>
unordered second</1li>
unordered third</1i>

ordered first</1li>
ordered second</1i>
ordered third</1i>
</o0l>

= two lists, one unordered and the other ordered

= style each list, and the list items using rulesets

ul {
border: 1px solid green;

}
ol {

border: 1px solid blue;

}

Demo - Complex Selectors - Part 1

= Demo - Complex Selectors Part 1

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/

CSS Basics - complex selector - part 2

= add a ruleset for the list items, <1i>
= applying the same style properties to both types of lists

= more specific to apply a ruleset to each list item for the different
lists

ul 1i {
color: blue;

}
ol 1i {

color: red;

}

= also be useful to set the background for specific list items in each
list

li:first-child {
background: #bbb;
}

= pseudoclass of nth-child to specify a style for the second, fourth
etc child in the list

li:nth-child(2) {
background: #ddd;
}

Demo - Complex Selectors - Part 2

= Demo - Complex Selectors Part 2

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/

CSS Basics - complex selector - part 3

= style odd and even list items to create a useful alternating pattern

li:nth-child(odd) {
background: #bbb;

}

li:nth-child(even) {
background: #ddd;

}

= select only certain list items, or rows in a table etc
e e.g. every fourth list item, starting at the first one

li:nth-child(4n+1) {
background: green;

}

= for even and odd children we’re using the above with convenient
shorthand

= other examples include
e last-child
e nth-Last-child()
e many others...

Demo - CSS Complex Selectors - Part 3

= Demo - Complex Selectors Part 3

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/

CSS Basics - cascading rules - part 1

= CSS, or cascading style sheets, employs a set of cascading rules

= rules applied by each browser as a ruleset conflict arises
e e.g. issue of specificity

p{

color: blue;

}
p.pl {
color: red;

}

= the more specific rule, the class, will take precedence
= issue of possible duplication in rulesets

h3 {
color: black;

}

h3 {
color: blue;

}

= cascading rules state the later ruleset will be the one applied
» blue heading instead of black...

CSS Basics - cascading rules - part 2

= simple styling and rulesets can quickly become compounded and
complicated

= different styles, in different places, can interact in complex ways

= a powerful feature of CSS
e can also create issues with logic, maintenance, and design

= three primary sources of style information that form this cascade

1. default styles applied by the browser for a given markup language *
e.g. colours for links, size of headings...

2. styles specific to the current user of the document * often affected by
browser settings, device, mode...

3. styles linked to the document by the designer * external file, embedded,
and as inline styles per element

CSS Basics - cascading rules - part 3

= basic cascading nature creates the following pattern
» browser’s style will be default
e user’s style will modify the browser’s default style
e Slyles of the document’s designer modify the styles further

CSS Basics - inheritance

= CSS includes inheritance for its styles
= descendants will inherit properties from their ancestors

= style an element
e descendants of that element within the DOM inherit that style

body {
background: blue;

}
p{

color: white;

}

= pis a descendant of body in the DOM
e /nherits background colour of the body

= this characteristic of CSS is an important feature
e helps to reduce redundancy and repetition of styles

= yseful to maintain outline of document’s DOM structure
= most styles follow this pattern but not all

= margin, padding, and border rules for block-level elements not
inherited

Video - CSS and Fonts

Typography considerations - part 1

Beginning Graphic Design: Typography

Typography - up to 2:13

Source - Typography - YouTube

https://youtu.be/sByzHoiYFX0
https://www.youtube.com/watch?v=sByzHoiYFX0

CSS Basics - fonts - part 1

= fonts can be set for the body or within an element’s specific
ruleset

= we need to specify our font-family,

body {
font-family: "Times New Roman", Georgia, Serif;

}

= value for the font-family property specifies preferred and fall-back
fonts
o Jimes New Roman, then the browser will try Georgia and Serif
e "" - qguotation marks for names with spaces...

n.b. "" added due to CSS validator requesting this standard - it’s believed
to be a legacy error with the validator...

CSS Basics - fonts - part 2

= useful to be able to modify the size of our fonts as well

body {
font-size: 100%;
}
h3 {
font-size: x-large;
}
p {

font-size: larger;
}
p.pl {

font-size: 1.lem;

}

m set base font size to 100% of font size for a user’s web browser

= scale our other fonts relative to this base size
o (CSS absolute size values, such as x-Large
e font sizes relative to the current context, such as Larger

e em are melta-units, which represent a multiplier on the current font-size
o relative to current element for required font size

o 1.5em of 12px is effective 18px

= em font-size scales according to the base font size
e modify base font-size, em sizes adjust

= try different examples at
e W3 Schools - font-size

http://www.w3schools.com/cssref/pr_font_font-size.asp

Demo - CSS Fonts

= Demo - CSS Fonts
= JSFiddle - CSS Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo6/
https://jsfiddle.net/ancientlives/em4ot8zt/

CSS Basics - fonts - part 3

= rem unit for font sizes
= sjze calculated against root of document

body {

font-size: 100%;
}
p {

font-size: 1.5rem;

}

= element font-size will be root size * rem size
e e.g. body font-size is currently 16px
e remwillbel6 * 1.5

CSS Basics - custom fonts

using fonts and CSS has traditionally been a limiting experience
reliant upon the installed fonts on a user’s local machine
JavaScript embedding was an old, slow option for custom fonts
web fonts are a lot easier

Google Fonts

e from the font options, select
o required fonts
o add a <1link> reference for the font to our HTML document
o then specify the fonts in our CSS

font-family: 'Roboto’;

https://www.google.com/fonts

Demo - CSS Custom Fonts

= Demo - CSS Custom Fonts
= JSFiddle - CSS Custom Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo7/
https://jsfiddle.net/ancientlives/o621f2fj/

Video - CSS and Fonts

Typography considerations - part 2

Beginning Graphic Design: Typography

Typography - up to 3:33

Source - Typography - YouTube

https://youtu.be/sByzHoiYFX0
https://www.youtube.com/watch?v=sByzHoiYFX0

CSS Basics - reset options

to help us reduce browser defaults, we can use a CSS reset

reset allows us to start from scratch

customise aspects of the rendering of our HTML documents in
browsers

often considered a rather controversial option

= considered controversial for the following primary reasons
e accessibility
e performance
e redundancy

= Use resets with care

= notable example of resets is Eric Meyer
o discussed reset option in May 2007 blog post

= resets often part of CSS frameworks...

http://meyerweb.com/eric/tools/css/reset/

Demo - CSS Reset - Before

Browser default styles are used for

= <h1l>, <h3>, and <p>
= Demo - CSS Reset Before

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo8/

Demo - CSS Reset - After

Browser resets are implemented using the Eric
Meyer stylesheet.

= Demo - CSS Reset After

http://meyerweb.com/eric/tools/css/reset/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo9/

CSS - a return to inline styles

= /nline styles are once more gaining in popularity
o helped by the rise of React &c.

= for certain web applications they are now an option
e allow us to dynamically maintain and update our styles

= their implementation is not the same as simply embedding styles
in HTML
e dynamically generated
e can be removed and updated
e can form part of our maintenance of the underlying DOM

= inherent benefits include
e 10 cascade
o built using JavaScript
e Styles are dynamic

http://facebook.github.io/react/

CSS - against inline styles

m CSS is designed for styling

o this is the extreme end of the scale - in effect, styling is only done with
CSS

= abstraction is a key part of CSS

e by separating out concerns, i.e. CSS for styling, our sites are easier to
maintain

= /nline styles are too specific
e again, abstraction is the key here

= some styling and states are easier to represent using CSS
e psuedoclasses elc, media queries...

= CSS can add, remove, modify classes
e dynamically update selectors using classes

CSS grid layout - part 1

intro

= grid designs for page layout, components...
» jncreasingly popular over the last few years
e useful for creating responsive designs

= quick and easy to layout a scaffolding framework for our
structured content

= create boxes for our content
o then position them within our grid layout

= content can be stacked in a horizontal and vertical manner
e creating most efficient layout for needs of a given application

= another benefit of CSS grids is that they are framework and
project agnostic
e thereby enabling easy transfer from one to another

= concept is based upon a set number of columns per page with a
width of 100%

= columns will increase and decrease relative to the size of the
browser window

= also set break points in our styles

e helps to customise a layout relative to screen sizes, devices, aspect
ratios...

» helps us differentiate between desktop and mobile viewers

Image - Grid Layout

Grid Layout - Columns and rows

CSS grid layout - part 2

grid.css

= build a grid based upon 12 columns
e other options with fewer columns as well

= tend to keep our grid CSS separate from the rest of the site
e maintain a CSS file just for the grid layout

= helps abstract the layout from the remaining styles
e makes it easier to reuse the grid styles with another site or application

= add a link to this new stylesheet in the head element of our pages

<link rel="stylesheet" type="text/css" href="assets/styles/grid.css">

or

<link rel="stylesheet" href="assets/styles/grid.css">

= ensure padding and borders are included in total widths and
heights for an element
e reselbox-sizing property to include the border-box
e reselting box model to ensure padding and borders are included

* A
box-sizing: border-box;

}

CSS grid layout - example - part 3

grid.css

= set some widths for our columns, 12 in total
e each representing a proportion of the available width of a page
e from a 12th to the full width of the page

.col-1 {width: 8.33%;}
.col-2 {width: 16.66%;}
.col-3 {width: 25%;}
.col-4 {width: 33.33%;}
.col-5 {width: 41.66%;}
.col-6 {width: 50%;}
.col-7 {width: 58.33%;}
.col-8 {width: 66.66%;}
.col-9 {width: 75%;}
.col-10 {width: 83.33%;}
.col-11 {width: 91.66%;}
.col-12 {width: 100%;}

= classes allow us to set a column span for a given element

o from 1 to 12 in terms of the number of grid columns an element may
span

CSS grid layout - example - part 4

grid.css

= then set some further styling for each abstracted col- class

[class*="col-"] {
position: relative;
float:left;
padding: 20px;
border: 1px solid #333;

}

= create columns by wrapping our content elements into rows
= each row always needs 12 columns

<div class="row">
<div class="col-6">left column</div>
<div class="col-6">right column</div>
</div>

CSS grid layout - example - part 5

grid.css

= due to the initial CSS of float left, each column is floated to the left

= columns are interpreted by subsequent elements in the hierarchy
as non-existent
» /nitial placement will reflect this design

= prevent this issue in layout, add the following CSS to grid
stylesheet

.row:before, .row:after {
content: ""
clear: both;
display: block;

}

= benefit of the clearfix, clear: both
e make row stretch to include columns it contains
o without the need for additional markup

DEMO - Grid Layout 1 - no gutters

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/grid/

Image - Grid Layout 1

grid test

Grid Layout - No Gutters

CSS grid layout - example - part 6
grid.css

= add gutters to our grid to help create a sense of space and
division in the content

= simplest way to add a gutter to the current grid css is to use
padding

e rows can use padding, for example

.row {
padding: 5px;
}

= jssue with simply adding padding to the columns
e margins are left in place, next to each other
e column borders next fto each with no external column gutter

fix this issue by targeting columns that are a sibling to a preceding
column

= means we do not need to modify the first column, only subsequent
siblings

[class*="col-"] + [class*="col-"] {
margin-left: 1.6%;
}

Image - Grid Layout 2

grid test 2 - putters

app's copyright information, additional links...

Grid Layout - Gutters Overflow

CSS grid layout - part 7

grid.css

= to fix this issue we recalculate permitted % widths for our columns
in the CSS

e we now have % widths as follows

.col-1 {width: 6.86%;}
.col-2 {width: 15.33%;}
.col-3 {width: 23.8%;}
.col-4 {width: 32.26%;}
.col-5 {width: 40.73%;}
.col-6 {width: 49.2%;}
.col-7 {width: 57.66%;}
.col-8 {width: 66.13%;}
.col-9 {width: 74.6%;}
.col-10 {width: 83.06%;}
.col-11 {width: 91.53%;}
.col-12 {width: 100%;}

= DEMO - Grid Layout 2 - gutters

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/grid2-gutters/

Image - Grid Layout 3

grid test 2 - gutters

app’s copyright information, additional links...

Grid Layout - Gutters

CSS grid layout - part 8

media queries

= often need to consider a mobile-first approach
= introduction of CSS3, we can now add media queries

= modify specified rulesets relative to a given condition
» eg. screen size for a desktop, tablet, and phone device

= media queries allow us to specify a breakpoint in the width of the
viewport
o will then trigger a different style for our application

= could be a simple change in styles
e such as colour, font etc

= could be a modification in the grid layout
o effective widths for our columns per screen size efc...

@media only screen and (max-width: 900px) {
[class*="col-"] {
width: 100%;
}

}

= gutters need to be removed
o specifying widths of 100% for our columns

[class*="col-"] + [class*="col-"] {
margin-left:0;
}

Image - Grid Layout 4

grid test 2 - gulters

Grid Layout - Media Queries

Video - CSS grid

Layout considerations

Beginning Graphic Design: Layout & Composition

Layout and composition - up to 2:45

Source - Layout and composition - YouTube

https://youtu.be/a5KYlHNKQB8
https://www.youtube.com/watch?v=a5KYlHNKQB8

CSS3 Grid - intro

= gid layout with CSS is useful for structure and organisation
e applied to HTML page

= usage similar to table for structuring data

= in its basic form
e enables developers to add columns and rows to a page

= grid layout also permits more complex, interesting layout options
e e.g. overlap and layers...

= further information on MDN website,
e MDN - CSS Grid Layout

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

CSS3 Grid - general concepts & usage

= grid may be composed of rows and columns
e thereby forming an intersecting set of horizontal and vertical lines

= elements may be added to the grid with reference to this
structured layout

Grid layout in CSS includes the following
general features,

= additional tracks for content

e Option fo create more columns and rows as needed to fit dynamic
content

= control of alignment
e align a grid area or overall grid

= control of overlapping content
e permit partial overlap of content
e an item may overilap a grid cell or area

= placement of items - explicit and implicit
e precise location of elements &c.
e use line numbers, names, grid areas &c.

= variable track sizes - fixed and flexible, e.g.
o specily pixel size for track sizes
e oruse flexible sizes with percentages or new fr unit

CSS3 Grid - grid container

= define an element as a grid container using
e display: grid ordisplay: inline-grid

= any children of this element become grid items
e 2g.

.wrapper {
display: grid;
}

= we may also define other, child nodes as a grid container
e any direct child nodes to a grid container are now defined as grid items

CSS3 Grid - what is a grid track?

= rows and columns defined with
e grid-template-rows andgrid-template-columns properties

= in effect, these define grid tracks

= as MDN notes,
e ‘agrid track is the space between any two lines on the grid,

o (https.//developer.mozilla.org/en-
US/docs/Web/CSS/CSS Grid_Layout/Basic Concepts of Grid _Layout)

»wn

= SO0, we may create both row and column tracks, e.g.

.wrapper {

display: grid;

grid-template-columns: 200px 200px 200px;
}

= wrapper class now includes three defined columns of width 200px
o thereby creating three tracks

= n.b. atrack may be defined using any valid length unit, not just
pX...

CSS3 Grid - fr unit for tracks - part 1

= CSS Grid now introduces an additional length unit for tracks, fr

= fr unit represents fractions of the space available in the current
grid container

e eg.

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
}

= We may also apportion various space to tracks, e.g.

.wrapper {
display: grid;
grid-template-columns: 2fr 1fr 1fr;
}

= creates three tracks in the grid
e but overall space effectively now occupies four parts
e two parts for 2fr, and one part each for remaining two 1fr

CSS3 Grid - fr unit for tracks - part 2

= we may also be specific in this sub-division of parts in tracks, e.g.

.wrapper {

display: grid;

grid-template-columns: 2060px 1fr 1fr;
}

= first track will occupy a width of 200px
e remaining two tracks will each occupy 1 fraction unit

CSS3 Grid - repeat () notation for fr - part 1

= for larger, repetitive grids, easier to use repeat()
e helps define multiple instances of the same track

e eg.

.wrapper {

display: grid;

grid-template-columns: repeat(4, 1fr);
}

= this creates four separate tracks - each defined as 1fr unit’s width

CSS3 Grid - repeat () notation for fr - part 2

= repeat() notation may also be used as part of the track definition
e e.g.

.wrapper {

display: grid;

grid-template-columns: 200px repeat(4, 1fr) 100px;
}

= this example will create
e one track of200px width
e then four tracks of 1fr width
e and finally a single track of 100px width

= repeat() may also be used with multiple track definitions
o thereby repeating multiple times

e eg.

.wrapper {

display: grid;

grid-template-columns: repeat(4, 1fr 2fr);
}

= this will now create eight tracks
 the first four of width 1fr
e and the remaining four of 2fr

CSS3 Grid - implicit and explicit grid creation

= in the above examples
» we simply define tracks for the columns
e and CSS grid will then apportion content to required rows

= we may also define an explicit grid of columns and rows
e eg.

.wrapper {
display: grid;
grid-template-columns: repeat(2 1fr);
grid-auto-rows: 150px;

}

= this slightly modifies an implicit grid to ensure each row is 200px
tall

CSS3 Grid - track sizing

= a3 grid may require tracks with a minimum size
e and the option to expand to fit dynamic content

= e.g. ensuring a track does not collapse below a certain height or
width

e and that it has the option to expand as necessary for the content..

m CSS Grid provides a minmax() function, which we may use with
rows

e eg.

.wrapper {
display: grid;
grid-template-columns: repeat(2 1fr);
grid-auto-rows: minmax(150px, auto);

}

= ensures each row will occupy a minimum of 150px in height
o still able to stretfch to contain the tallest content
o whole row will expand to meet the auto height requirements
» thereby affecting each track in the row

CSS3 Grid - grid lines

= a grid is defined using tracks
e and not lines in the grid

= created grid also helps us with positioning by providing numbered
lines

= e.g. in a three column, two row grid we have the following,
e four lines for the three vertical columns
e three lines for the two horizontal rows

= such lines start at the left for columns, and at the top for rows

= 1n.b. line numbers start relative to written script
» e.g left to right for western, right to left for arabic...

CSS3 Grid - positioning against lines

= when we place an item in a grid
* we use these lines for positioning, and not the tracks

= reflected in usage of

e grid-column-start, grid-column-end, grid-row-start, andgrid-
row-end properties.

= jtems in the grid may be positioned from one line to another
e e.g. column line 1 to column line 3

= 1n.b. default span for an item in a grid is one track,
e e.g. define column start and no end - default span will be one track...

e eg.

.contentl {
grid-column-start: 1;
grid-column-end: 4;
grid-row-start: 1;
grid-row-end: 3;

}

CSS3 Grid - grid cell & grid area

grid cell

= a cellis the smallest unit on the defined grid layout
= jtis conceptually the same as a cell in a standard table
= as content is added to the grid, it will be stored in one cell

grid area

= we may also store content in multiple cells
o thereby creating grid areas

= grid areas must be rectangular in shape

= e.g. agrid area may span multiple row and column tracks for
required content

CSS3 Grid - add some gutters

= gutters may be created using the gap property
e gvailable for either column or row
e column-gap androw-gap

e eg

.wrapper {
display: grid;
grid-template-columns: repeat(4, 1fr 2fr);
column-gap: 5px;
row-gap: 10px;
}

= 1n.b. any space used for gaps will be determined prior to assigned
space for fr tracks

CSS3 Grid - working examples

= grid basic - page zones and groups
= grid basic - article style page
= grid layout - articles with scroll

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/

Video - CSS grid

Grid and layouts

Layout and composition tutorial: Grid variations | lynda.com

Layout and Composition: Grid Variations

Source - Layout and Composition - YouTube

https://www.youtube.com/watch?v=7YcVzUY-A78
https://www.youtube.com/watch?v=7YcVzUY-A78

CSS3 Grid - sample layouts

intro

= grid layout enables more complex and interesting layout options
e overlap, layers..

= sample layouts using CSS grid structure
e common layout options and designs
o useful repetition of design
» modify base layouts for various site requirements

= sample layouts
e responsive layouts
e guto placement for dynamic content and media
e platform agnostic designs
o useful with SPA, SVG, async patterns &c.

CSS3 Grid - responsive layout

intro

= display a layout with a variety of patterns and structures, e.g.
» single column for a phone
e add a sidebar for a tablet of lower window resolution
o full width view with dual sidebars &c.

= use responsive designs and structures for various games, media
playback...

= responsive works with variety of markup
e e.g. transform SVG designs

CSS3 Grid - responsive layout

page structure

= start with a sample page structure for a HTML page

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CSS Grid - Responsive Layout</title>
<link rel="stylesheet" type="text/css" href="./assets/style.css">
</head>
<body>
<div class="wrapper">

</div>
</body>
</html>

CSS3 Grid - responsive layout

page structure - HTML5

= add some HTML5 markup for a header, navigation, footer,
and some main content

<div class="wrapper">
<header class="site-header">
<h3>Spire & the Signpost</h3>
<h5>Shine through the gloom, and point to the stars...</h5>
</header>
<nav class="site-nav">

Home</1i>
Charts</1li>
Data</1li>
Views</1li>

</nav>
<!-- use aside for tangentially related content for parent section... -->
<aside class="content-side">
<header>
<h5>sidebar...</h5>
</header>
</aside>
<main class="content">
<article class="content-article">
<header class="article-header">
<h5>Welcome</h5>
</header>
<p>...</p>
</article>
</main>
<section class="site-links">
<h6>social links...</h6>
</section>
<footer class="site-footer">
<hé>footer...</h6>
</footer>
</div>

= demo - basic responsive

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v1/

CSS3 Grid - responsive layout

CSS and structure - part 1

= for the page structure
e need to define some template areas for our grid in the CSS
e ag.

/* CONTENT */
.content {
grid-area: content;

}

= use such template area names
o defined with the grid-area property
» (define a layout for the overall page or part of a page

CSS3 Grid - responsive layout

CSS and structure - part 2

= template areas may then be used with the parent for the grid
structure
e e.g.wrapper for the overall page

.wrapper {

display: grid;

grid-gap: 10px;

grid-template-areas:
"site-header"
"site-nav"
"content-side"
"content"
"site-links"
"site-footer"

= wrapper class will display as a grid
o with a gap between each area of the grid
e has a single column in this example
e /ncludes the required order for the grid areas

CSS3 Grid - responsive layout

define media query

= current example would be suitable for a collapsed phone view
e single column view
o will also render for other resolutions and devices

= then add a media query for alternative layouts and displays
e may be triggered using a check of current width for screen
e check widlth of window...

/* min 700 */
@media (min-width: 700px) {
.wrapper {

grid-template-columns: 1fr 3fr;
grid-template-areas:
"site-header site-header"
"site-nav site-nav"
"content-side content™
"site-links site-footer"

CSS3 Grid - responsive layout

specific media query

= add further media queries to handle various rendering
requirements
e e.g. add height property to fix footer at bottom of page

@media (min-width: 700px) {
.wrapper {
grid-template-columns: 1fr 3fr;
grid-template-rows: 120px 60px calc(98vh - 240) 60px;
grid-template-areas:
"site-header site-header™
"site-nav site-nav"
"content-side content™
"site-links site-footer";
height: 98vh;

= specify height of current viewport using a relative unit, vh

= add grid-template-rows to define known heights for three of
the four rows

= add a variant height for the main content

e main content is only given a height corresponding to available space in
viewer window

e height achieved using the calc () function

= demo - responsive with specific media query

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v2/

CSS3 Grid - responsive layout

relative lengths

= use relative lengths and calculations for CSS property values

= for example,
e vw - variable width relative to 1% of width of current viewport
e vh - variable height relative to 1% of height of current viewport
e vmin - relative to 1% of viewport's smaller dimension
e vmax - relative to 1% of viewport's larger dimension

CSS3 Grid - responsive layout

sample updates - part 1

= after testing this type of responsive layout
e we might add various updates

e e.g. create a parent banner area for a header, user login, site search,
and site nav

.banner {
grid-area: site-banner;
display: grid;
grid-template-columns: auto 300px;
grid-template-rows: 120px 60px;
grid-template-areas:
"site-header banner-extras”
"site-nav site-nav";

= helps manage layout and relative sizes of banner content
e regardless of page width and height

CSS3 Grid - responsive layout

sample updates - part 2

= banner-extras might be styled as follows,

.banner-extras {
grid-area: banner-extras;
display: grid;
grid-template-areas:
"site-user"
"site-search";
padding: 5%;

= use of a child grid helps us manage fixed places within the parent
banner area

CSS3 Grid - responsive layout

sample updates - part 3

= update our current media query for a min-width of 900px

/* min 900 */
@media (min-width: 900px) {
.wrapper {
grid-template-areas:
"site-banner site-banner"
"content-side content™
"site-links site-footer";
height: 98vh;
grid-template-columns: 250px 3fr;
grid-template-rows: 180px auto 60px;

= demo - responsive layout - part 1
= demo - responsive layout - part 2

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v4/

CSS3 Grid - auto placement

dynamic content and media - part 1

= also use CSS grid with Flexbox to create content layouts
e e.g. similar to placing cards in the Ul

= we might create a layout to dynamically render images for a photo
album
e 0ra series of products in a brochure &c.

= start by defining a simple list with various list items

<ul class="items">
One</1i>
<1li>Two</1i>
<1li>Three</1i>
Four</1i>
Five</1li>
<1li>Six</1i>
Seven</1i>
Eight</1i>
<1li>Nine</1i>

CSS3 Grid - auto placement

dynamic content and media - part 2

= then render these list items in flexible columns within our grid
layout
e define a minimum size
e then ensure they expand to equally fill available space

= ensures rendered layout includes equal width columns regardless
of available content

/* content items */
.dtems {
display: grid;
grid-gap: 5px;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
list-style: none;

= and render individual items using flexbox

.items 1i {
border: 1px solid #3b8eb4;
display: flex;
flex-direction: column;

}

= demo - dynamic content - part 1
= demo - dynamic content - part 2

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v2/

a game board

CSS3 Grids - fun layout

= also use a grid layout for internal uses
e e.g. design a game board

= basic HTML list use for 3x3 game board
e each list item as a square on the board

<main class="content">
<ul class="items">

<h5>0ne</h5>
</1i>
<1li>
<h5>Two</h5>
</1i>

<h5>Three</h5>
</1i>
<1li>
<h5>Four</h5>
</1i>

<h5>Five</h5>
</1i>

<h5>Six</h5>
</1i>
<1li>
<h5>Seven</h5>
</1i>

<h5>Eight</h5>
</1i>

<h5>Nine</h5>
</1i>

CSS3 Grids - fun layout

a game board - part 2

= then create the grid for the content class

/* CONTENT */

.content {
grid-area: content;
display: grid;
grid-template-areas:

"items";

grid-template-columns: 1fr;
align-self: center;
justify-self: center;
align-items: center;
padding: 50px;
border: 1px solid #aaa;

= we can embed this content area within other grids
» then add child items for the grid content itself

= content container will be aligned and justified to the centre of the
parent

= each child column will occupy the same proportion of available
space
e usinggrid-template-columns: 1fr

= each item will also be aligned to the centre of the available space

= properties such as padding and border are optional
e e.g. dictated by aesthetic requirements...

CSS3 Grids - fun layout

grid items for the board - part 1

= each square will be a child list item to the parent ul
e e.g. styleul as follows

.items {
grid-area: items;
display: grid;
grid-gap: 10px;
grid-template-columns: repeat(3, 150px);
grid-template-rows: 150px 150px 150px;
}

CSS3 Grids - fun layout

grid items for the board - part 2

= then style each item, which creates the squares on the game
board

.Jitems 1i {
margin: 0;
list-style-type: none;
border: 1px solid #333;
background-color: #333;
color: #fff;
padding: 10%;

= styling is for aesthetic purposes
e e.g. lo render a list item as a square without the default list style

= also define an alternating colour scheme for our squares, e.g.

.items li:nth-child(even) {
border: 1px solid #ccc;
background-color: #ccc;
color: #333;

= demo - Fun with Squares

http://linode4.cs.luc.edu/teaching/cs/demos/424/games/basic-squares/v5/

CSS3 Grid - structure and layout

fun exercise

Choose one of the following app examples,

= sports website for latest scores and updates
e e.g. scores for current matches, statistics, team data, player info &c.

= shopping website
e product listings and aaverts, cart, reviews, user account page &c.

= restaurant website
e /ntroductory info, menus, sample food images, user reviews &c.

Then, consider the following

= use of a grid to layout your example pages
o where is it being used?
e why is it being used for a given part of the Ul?

= how is the defined grid layout working with the box model?

= rendering of box model in the main content relative to grid usage
e /e. box model updates due to changes in content

Demos

CSS Basics - Add a Class

CSS - Complex Selectors Part 1
CSS - Complex Selectors Part 2
CSS - Complex Selectors Part 3

= CSS-Fonts
e CSS Fonts
e (CSS Custom Fonts
e (CSS Reset Before
o (CSS Reset After

m CSS - Grids
e grid basic - page zones and groups
e grid basic - article style page
e grid layout - articles with scroll
e grid layout - basic responsive
o grid layout - responsive with specific media query
e grid layout - responsive layout - part 1
e grid layout - responsive layout - part 2
e grid layout - dynamic content - part 1
e grid layout - dynamic content - part 2
e grid layout - Fun with Squares

» JSFiddle tests - CSS
e CSS Fonts
e (CSS Custom Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-basics/v0.2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo7/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo8/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo9/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/auto-placement/v2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/games/basic-squares/v5/
https://jsfiddle.net/ancientlives/em4ot8zt/
https://jsfiddle.net/ancientlives/o621f2fj/

Resources

Google Web Fonts

MDN - CSS Box Model

MDN - CSS3 Grid

MDN - CSS Selectors

W3 Schools - CSS Grid View

https://fonts.google.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://www.w3schools.com/css/css_rwd_grid.asp

