
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 6

Dr Nick Hayward

CSS - Flexbox

intro

helps solve many issues that have continued to plague layout and
positioning

used with HTML elements and components
both client-side and cross-platform apps

a few issues it tries to solve
vertical and horizontal alignment

defining a centred position for child elements relative to their parent

equal spacing and proportions for child nodes regardless of available
space

equal heights and widths for varied content

& lots more…

CSS - Flexbox

basic usage

for any app layout, we need to define specific elements as flexible

boxes

i.e. those allowed to use flexbox in a given app
e.g.

ruleset will define a section element as a parent flex container
child elements may now accept flex declarations

initial declaration, display: flex
also includes default values for flexbox layout of child elements

e.g. <div> elements in a section
by default now arranged as equal sized columns with the same initial
height

section {
 display: flex;
}

CSS - Flexbox

axes

elements arranged using flexbox are laid out on two axes

main axis
axis running in the direction of the currently laid out flex items

e.g. rows or columns

start and end of axis = main start & main end

cross axis
axis running perpendicular to the current main axis

start and end of axis = cross start & cross end

each child element laid out inside flex container called a flex item

CSS - Flexbox

flex direction

set a property for the flex direction
defines direction of flex items relative to main axis

i.e. layout direction for child elements

default setting is row
direction will be relative to current browser language setting

e.g. for English language browsers = left to right

override the default row setting
arrange child items in a column

ensures child flex items were 1aid out in a single column

then override specific section elements
allow child flex items in a row direction

section {
 flex-direction: column;
}

section {
 display: flex;
 flex-direction: column;
}

#tabs {
 flex-direction: row;
}

Image - CSS Flexbox

flex direction

CSS Flexbox - flex direction

CSS - Flexbox

flex item wrapping

ensure child items do not overlap their parent flex container
add a declaration for flex-wrap to a required ruleset

e.g.

#tabs {
 flex-direction: row;
 flex-wrap: wrap;
}

Image - CSS Flexbox

without wrap

CSS Flexbox - no flex wrap

Image - CSS Flexbox

with wrap

CSS Flexbox - flex wrap

Video - Flexbox

flexible design

Examples of Modular UI Design

Source - Modular UI Design - YouTube

Examples of Modular User Interface DesignExamples of Modular User Interface Design

https://www.youtube.com/watch?v=agPAklO7slY
https://www.youtube.com/watch?v=agPAklO7slY

CSS - Flexbox

flex direction reverse

also set flex direction to reverse
starts flex items from the right on an English language browser

#tabs {
 flex-direction: row-reverse;
 flex-wrap: wrap;
}

Image - CSS Flexbox

flex direction reverse

CSS Flexbox - flex direction reverse

CSS - Flexbox

flex-flow shorthand

also combine direction and wrap into a single declaration
flex-flow
now contain values for both row and wrap
e.g.

#tabs {
 flex-flow: row wrap;
}

CSS - Flexbox

sizing of flex items

for each flex item, we may need to specify apportioned space in
the layout
e.g. set space as an equal proportion for each flex item

we may add the following to a child item ruleset

defines each child flex item <div class="fTab">
occupy an equal amount of space within the given row

after considering margin and padding

n.b. this value is proportional
doesn’t matter if the value is 1 or 100 &c.

define additional flex proportions for specific child items
e.g.

each odd flex-item will now occupy twice available space
space in the current direction

div.fTab {
 flex: 1;
}

div.fTab:nth-child(odd) {
 flex: 2;
}

Image - CSS Flexbox

flex item sizing

CSS Flexbox - flex item sizing

CSS - Flexbox

minimum size

then set a minimum size for a flex item
e.g.

or a relative unit for the size

each flex item will initially be given a minimum
e.g. 20% of the available space

the remaining space will be defined relative to proportion units

div.fTab {
 flex: 1 100px;
}

div.fTab {
 flex: 1 20%;
}

Image - CSS Flexbox

flex item sizing

CSS Flexbox - flex item sizing - minimum size

CSS - Flexbox

flex item alignment

Flexbox allows us to define alignment for flex items in each flex
container
relative to the main and cross axes

e.g. we might want to specify a centred alignment for flex items

align-items: center
causes flex item in flex container to be centred along the cross axis

however, they’ll still maintain their basic dimensions

also modify value for align-items to either flex-start or flex-
end
such values will align flex items to either start or end of cross axis

#tabs {
 flex-direction: row;
 flex-wrap: wrap;
 align-items: center;
}

CSS - Flexbox

override align per flex item

as with flex
also override alignment per flex item

using align-self property add a value for positioning

e.g. a sample declaration might be as follows

div.fTab:nth-child(even) {
 flex: 2;
 align-self: flex-end;
}

CSS - Flexbox

justify content for flex item

also specify justify-content for flex items in a flex container
property allows us to define position of a flex item relative to main axis

default value is flex-start
then modify it relative to one of the following
flex-end
center
space-around
distributes each flex item evenly along main axis with space at either end

space-between
same as space-around without space at either end…

CSS - Flexbox

alignment and order - part 1

define alignment relative to each axis using a specific declaration
e.g. for the main we may use justify-content
for the cross axis we use align-items

also modify layout order of flex items
without directly changing underlying source order

use the following pattern to specify order

first flex item will now move to the end of the tab list

div.fTab:first-child {
 order: 1;
}

Image - CSS Flexbox

flex item order

CSS Flexbox - flex item order 1

CSS - Flexbox

alignment and order - part 2

due to default order for flex items
by default, all flex items have an order value set to 0

higher the order value, later the item will appear in the list &c.

items with the same order will revert to the order in the source
code

also possible to ensure certain items will always appear first
or at least before default order values

by using a negative value for the order declaration

e.g.

div.fTab:last-child {
 order: -1;
}

CSS - Flexbox

nesting flex containers and items - part 1

Flexbox can also be used to create nested patterns and structures
e.g. we may set a flex item as a flex container for its child nodes

we might add a banner to the top of a page

<section id="banner">
 <header id="page-header">
 <h3>spire and the signpost</h3>
 <h5>point to the stars...</h5>
 </header>
 <section id="search">
 <input type="text" id="searchBox"/>
 <button id="searchBtn">Search</button>
 </section>
</section>

CSS - Flexbox

nesting flex containers and items - part 2

set #banner, #page-header, and #search as flex containers
e.g.

then specify various declarations for #search
e.g.

includes values for itself and any child elements
if we then add some rulesets for the nested flex items

e.g.

we get a simple proportional split of 4:1 for the input field to the
button

#search {
 display: flex;
}

#search {
 display: flex;
 flex-direction: row;
 flex: 2;
 align-self: flex-start;
}

#searchBox {
 flex: 4;
}

#searchBtn {
 flex: 1;
}

Image - CSS Flexbox

nested flex containers

CSS Flexbox - nested flex containers

Video - Flexible Design

fun designs

Fun examples of responsive design - UP TO
0:51

Source - Example Responsive UI Designs -
YouTube

The 14 Best Examples of Responsive DesignThe 14 Best Examples of Responsive Design

https://www.youtube.com/watch?v=2mKvjEdvtNE
https://www.youtube.com/watch?v=2mKvjEdvtNE

building a web app - sample outline of underlying
structure

apps developed using a full JavaScript stack

using and incorporating JS into each part of app’s development
UI front-end

app server and management

data store and management

Technologies will include
front-end: HTML5, CSS, JS…

app server: Node.js, Express…

data store: MongoDB, Redis, Mongoose…

Data format is JSON

Image - building a web app - sample outline

JS full-stack outline

n.b. I’ve explicitly omitted any arrows for flow within this diagram. This is

something we’ll return to as we start to work with Node.js, Mongoose,

and MongoDB.

JS Intro

JavaScript (JS) a core technology for client-side design and
development

now being used as a powerful technology to help us
rapidly prototype and develop web, mobile, and desktop apps

libraries such as jQuery, React, AngularJS, and Node.js

helps develop cross-platform apps
Apache Cordova

Electron

Embedded systems
Espruino - http://www.espruino.com/

Tessel - https://tessel.io/

https://jquery.com/
http://facebook.github.io/react/
https://angularjs.org/
https://nodejs.org/en/
https://cordova.apache.org/
http://electron.atom.io/

JS Basics - operators

operators allow us to perform
mathematical calculations

assign one thing to another

compare and contrast…

simple * operator, we can perform multiplication

we can add, subtract, and divide numbers as required

mix mathematical with simple assignment

2 * 4

a = 4;
b = a + 2;

JS Basics - some common operators - part 1

Assignment

=
eg: a = 4

Comparison

<, > <=, >=
eg: a <= b

Compound assignment

+=, -=, *=, /=
compound operators are used to combine a mathematical
operation with assignment

same as result = result + expression
eg: a += 4

Equality

operator description

== loose equals

=== strict equals

!= loose not equals

!== strict not equals

eg: a != b

JS Basics - some common operators - part 2

Increment/Decrement

increment or decrement an existing value by 1
++, --
eg: a++ is equal to a = a + 1

Logical

used to express compound conditionals - and, or

&&, ||
eg: a || b

Mathematical

+, -, *, /
eg: a * 4 or a / 4

Object property access

properties in objects are specific named locations for holding
values and data

effectively, values within values
.
eg: a.b means object a with a property of b

JS Basics - values and types

able to express different representations of values
often based upon need or intention

known as types

JS has built-in types
allow us to represent primitive values

eg: numbers, strings, booleans

such values in the source code are simply known as literals

literals can be represented as follows,
string literals use double or single quotes eg: "some text" or 'some
more text'
numbers and booleans are represented without being escaped eg: 49,
true;

also consider arrays, objects, functions…

JS Basics - type conversion

option and ability to convert types in JS
in effect, coerce our values and types from one type to another

convert a number, or coerce it, to a string

built-in JS function, Number(), is an explicit coercion
explicit coercion, convert any type to a number type

implicit coercion, JS will often perform as part of a comparison

JS implicitly coerces left string to a matching number
then performs the comparison

often considered bad practice
convert first, and then compare

implicit coercion still follows rules
can be very useful

"49" == 49

JS Basics - variables - part 1

symbolic container for values and data

applications use containers to keep track and update values

use a variable as a container for such values and data
allow values to vary over time

JS can emphasize types for values, does not enforce on the
variable
weak typing or dynamic typing

JS permits a variable to hold a value of any type

often a benefit of the language

a quick way to maintain flexibility in design and development

JS Basics - variables - part 2

declare a variable using the keyword var
declaration does not include type information

var a maintains a running total of the value of a
keeps record of changes, effectively state of the value

state is keeping track of changes to any values in the application

var a = 49;
//double var a value
var a = a * 2;
//coerce var a to string
var a = String(a);
//output string value to console
console.log(a);

JS Basics - variables - part 3

use variables in JS to enable central, common references to our
values and data

better known in most languages simply as constants

JS is similar
creates a read-only reference to a value

value itself is not immutable, e.g. an object…

it’s simply the identifier that cannot be reassigned

JS constants are also bound by scoping rules

allow us to define and declare a variable with a value
not intended to change throughout the application

constants are often declared together
uppercase is standard practice - although not a rule…

form a store for values abstracted for use throughout an app

JS normally defines constants using uppercase letters,

ECMAScript 6, ES6, introduces additional variable keywords
e.g. const

benefits of abstraction, ensuring value is not accidentally changed
change rejected for a running app

in strict mode, app will fail with an error for any change

var NAME = "Philae";

const TEMPLE_NAME = "Philae";

JS Basics - comments

JS permits comments in the code

two different implementations
single line

multi-line

//single line comment
var a = 49;

/* this comment has more to say...
we'll need a second line */
var b = "forty nine";

JS Basics - logic - blocks

simple act of grouping contiguous and related code statements
together
known as blocks

block defined by wrapping statements together
within a pair of curly braces, {}

blocks commonly attached to other forms of control statement

if (a > b) {
...do something useful...
}

JS Basics - logic - conditionals - part 1

conditionals, conditional statements require a decision to be made

code statement, application, consults state

answer will predominantly be a simple yes or no

JS includes many different ways we can express conditionals

most common example is the if statement
if this given condition is true, do the following…

if statement requires an expression between the parentheses
evaluates as either true or false

if (a > b) {
console.log("a is greater than b...");
}

JS Basics - logic - conditionals - part 2

additional option if this expression returns false
using an else clause

for an if statement, JS expects a boolean
JS defines a list of values that it considers false

eg: 0…

any value not on this list of false values will be considered true
coerced to true when defined as a boolean

conditionals in JS also exist in another form
the switch statement

more to come…

if (a > b) {
console.log("a is greater than b...");
} else {
console.log("no, b is greater...");
}

JS Basics - logic - loops

loops allow repetition of sets of actions until a condition fails

repetition continues whilst the requested condition holds

loops take many different forms and follow this basic behaviour

a loop includes the test condition as well as a block

normally within curly braces

block executes, an iteration of the loop has occurred

good examples of this behaviour include while and do...while
loops

basic difference between these loops, while and do...while
conditional tested is before the first iteration (while loop)

after the first iteration (do...while) loop

if the condition is initially false
a while loop will never run

a do...while will run through for the first time

also stop a JS loop using the common break statement

for loop has three clauses, including
initialisation clause

conditional test clause

update clause

JS Basics - logic - functions - part 1

functions are a type of object
may also have their own properties

define once, then re-use as needed throughout our application

function is a named grouping of code
name can be called, and code will be run each time

JS functions can be designed with optional arguments
known as parameters

allow us to pass values to the function

functions can also optionally return a value

function outputTotal(total) {
 console.log(total);
}
var a = 49;
a = a * 3; // or use a *= 3;

outputTotal(a);

JS Basics - logic - functions - part 2

JSFiddle Demo

function outputTotal(total) {
 console.log(total);
}

function calculateTotal(amount, times) {
 amount = amount * times;
 return amount;
}

var a = 49;
a = calculateTotal(a, 3);
outputTotal(a);

http://jsfiddle.net/ancientlives/0432kzb0/

JS Basics - logic - scope

scope or lexical scope

collection of variables, and associated access rules by name

in JS each function gets its own scope

variables within a function’s given scope

can only be accessed by code inside that function

variable name has to be unique within a function’s scope

same variable name could appear in different scopes

nest one scope within another
code in inner scope can access variables from either inner or outer
scope

code in outer scope cannot, by default, access code in the inner scope

JS Basics - logic - scope example

JSFiddle Demo

function outerScope() {
 var a = 49;
 //scope includes outer and inner
 function innerScope() {
 var b = 59;
 //output a and b
 console.log(a + b); //returns 108
 }
 innerScope();

 //scope limited to outer
 console.log(a); //returns 49
}

//run outerScope function
outerScope();

http://jsfiddle.net/ancientlives/7wgvkjub/

JS Basics - strict mode

intro of ES5 - JS now includes option for strict mode
ensures tighter code and better compliance…

often helps ensure greater compatibility, safer use of language…

can also help optimise code for rendering engines

add strict at different levels within our JS code
eg: single function level or enforce for whole file

if we set strict mode for complete file - set at top of file
all functions and code will be checked against strict mode
eg: check against auto-create for global variables
or missing var keyword for variables…

function outerScope() {
 "use strict";
 //code is strict

 function innerScope() {
 //code is strict

 }
}

function outerScope() {
 "use strict";
 a = 49; // `var` missing - ReferenceError
}

Video - JavaScript

strict mode

JavaScript Strict Mode - UP TO 4:32

Source - JavaScript - Overview of Strict Mode

Strict Mode in JavaScript Explained [1/2]Strict Mode in JavaScript Explained [1/2]

https://www.youtube.com/watch?v=w3xaL6jSOiI
https://www.youtube.com/watch?v=w3xaL6jSOiI

JS Core - values and types

JS has typed values, not typed variables

JS provides the following built-in types
boolean

null

number

object

string

symbol (new in ES6)

undefined

more help provided by JS’s typeof operator
examine a value and return its type

as of ES6, there are 7 possible return types in JS

NB: JS variables do not have types, mere containers for values
values specify the type

var a = 49;
console.log(typeof a); //result is a number

var a = null;
console.log(typeof a); //result is object - known bug in JS...

JS Core - objects - part 1

Objects

object type includes a compound value
JS can use to set properties, or named locations

each of these properties holds its own value
can be defined as any type

access these values using either dot or bracket notation

var objectA = {
 a: 49,
 b: 59,
 c: "Philae"
};

//dot notation
objectA.a;
//bracket notation
objectA["a"];

JS Core - objects - example

// create object
var object = {
 archive: 'waldzell',
 access: 'castalia',
 purpose: 'gaming'
};

// log output with dot notation
console.log(`archive is ${object.archive}`);

// log output with bracket notation - returns undefined
console.log(`access is restricted to ${object[1]}`);

// log output with bracket notation
console.log(`purpose is ${object['purpose']}`);

Image - JS Object

JS Object

ES6 - template literals

// create object
var object = {
 archive: 'waldzell',
 access: 'castalia',
 purpose: 'gaming'
};

// log output with template literals
console.log(`archive is ${object.archive}`);

// log output
console.log('archive is ' + object.archive);

// log output all object properties with template literals
console.log(`archive = ${object.archive}, access = ${object.access}, purpose =

${object.purpose}`);

// log output all object properties
console.log('archive = ' + object.archive + ', access = ' + object.access + ' purpose = ' +

object.purpose);

JS Core - objects - part 2

Arrays

JS array an object that contains values, of any type, in numerically
indexed positions
store a number, a string…

array will start at index position 0
increments by 1 for each new value

arrays can also have properties
eg: automatically updated length property

each value can be retrieved from its applicable index position,

var arrayA = [
 49,
 59,
 "Philae"
];
arrayA.length; //returns 3

arrayA[2]; //returns the string "Philae"

Image - JS Array

JS Array

JS Core - objects - Arrays

examples

Random Greeting Generator - Basic

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/

JS Core - checking equality - part 1

JS has four equality operators, including two not equal

==, ===, !=, !==

== - checks for value equality, whilst allowing coercion

=== - checks for value equality but without coercion

first comparison checks values
if necessary, try to coerce one or both values until a match occurs

allows JS to perform a simple equality check

results in true

second check is simpler
coercion is not permitted, and a simple equality check is performed

results in false

var a = 49;
var b = "49";

console.log(a == b); //returns true
console.log(a === b); //returns false

JS Core - checking equality - part 2

which comparison operator should we use

useful suggestions for usage of comparison operators
use === if either side of the comparison could be true or false

use === if either value could be one of the following specific values,
0, "", []

otherwise, it’s safe to use ==
simplify code in a JS application due to the implicit coercion.

not equal counterparts, ! and !== work in a similar manner

JS Core - checking inequality - part 1

known as relational comparison, we can use the inequality
operators,
<, >, <=, >=

inequality operators often used to check comparable values like
numbers
inherent ordinal check

can be used to compare strings

coercion also occurs with inequality operators
no concept of strict inequality

"hello" < "world"

var a = 49;
var b = "59";
var c = "69";

a < b; //returns true
b < c; //returns true

JS Core - checking inequality - part 2

we can encounter an issue when either value cannot be coerced
into a number

issue for < and > is string is being coerced into invalid number
value, NaN
== coerces string to NaN and we get comparison between 49 ==
NaN

var a = 49;
var b = "nice";

a < b; //returns false
a > b; //returns false
a == b; //returns false

JS Core - more variables - part 1

a few rules and best practices for naming valid identifiers

using typical ASCII alphanumeric characters
an identifier must begin with a-z, A-Z, $, _
may contain any of those characters, plus 0-9

property names follow this same basic pattern

careful not to use certain keywords, or reserved words

reserved words can include such examples as,
break, byte, delete, do, else, if, for, this, while and so
on

further details are available at the W3 Schools site

in JS, we can use different declaration keywords relative to
intended scope
var for local, global for global…

such declarations will influence scope of usage for a given
variable

concept of hoisting

defines the declaration of a variable as belonging to the entire scope

by association accessible throughout that scope as well

also works with JS functions - hoisted to the top of the scope

http://www.w3schools.com/js/js_reserved.asp

JS Core - more variables - part 2

concept of nesting, and scope specific variables

ES6 enables us to restrict variables to a block of code

use keyword let to declare a block-level variable

let restricts variable’s scope to if statement

variable b is not available to the whole function

if (a > 5) {
let b = a + 4;

console.log(b);

}

ES6 - let variable

// function
var archiveCheck = function (level) {
 // add variable for archive
 var archive = 'waldzell';
 // specify purpose - default return
 var purpose = 'restricted';

 // check access level
 if (level === 'castalia') {
 let purpose = 'gaming';
 return purpose;
 }

 return purpose;
}

// log output - pass correct parameter value
console.log(`archive purpose is ${archiveCheck('castalia')}`);

// log output - pass incorrect parameter value
console.log(`archive purpose is ${archiveCheck('mariafels')}`);

JS Core - let

example

Random Greeting Generator - A bit better

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better/

Video - Variables

let and const

JavaScript scope and variable usage - UP TO
2:30

Source - JavaScript scope and variables

JavaScript Scope (Local vs Global)JavaScript Scope (Local vs Global)

https://www.youtube.com/watch?v=iJKkZA215tQ
https://www.youtube.com/watch?v=iJKkZA215tQ

JS Core - more variables - part 3

add strict mode to our code

without we get a variable that will be hoisted to the top either
set as a globally available variable, although it could be deleted

or it will set a value for a variable with the matching name

bubbled up through the available layers of scope

becomes similar in essence to a declared global variable

can create some strange behaviour in our applications
tricky and difficult to debug

remember to declare your variables correctly and at the top

JS Core - more variables - example

var a;

function myScope() {
 "use strict";
 a = 49;
}

myScope()
a = 59;
console.log(a);

Demos

ES6 (ES2015)
let usage - Random Greeting Generator v0.2

JS Arrays
Random Greeting Generator - v0.1

JSFiddle
Basic logic - functions

Basic logic - scope

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better/
http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/
http://jsfiddle.net/ancientlives/0432kzb0/
http://jsfiddle.net/ancientlives/7wgvkjub/

Resources

Example Responsive UI Designs - YouTube

JavaScript - Overview of Strict Mode

JavaScript - Scope and variables

MDN - CSS Flexbox

MDN - JS

MDN - JS Data Types and Data Structures

MDN - JS Grammar and Types

MDN - JS Objects

Modular UI Design - YouTube

W3 Schools - CSS Flexbox

W3 Schools - JS

https://www.youtube.com/watch?v=2mKvjEdvtNE
https://www.youtube.com/watch?v=w3xaL6jSOiI
https://www.youtube.com/watch?v=iJKkZA215tQ
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://www.youtube.com/watch?v=agPAklO7slY
https://www.w3schools.com/css/css3_flexbox.asp
http://www.w3schools.com/js/default.asp

