Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 6

Dr Nick Hayward

CSS - Flexbox

intro

= helps solve many issues that have continued to plague layout and
positioning
= used with HTML elements and components
e both client-side and cross-platform apps

= afew issues it tries to solve
e vertical and horizontal alignment
e defining a centred position for child elements relative to their parent
e equal spacing and proportions for child nodes regardless of available
space
e equal heights and widths for varied content
e & lots more...

CSS - Flexbox

basic usage

= for any app layout, we need to define specific elements as flexible
boxes

= j.e. those allowed to use flexbox in a given app
e 2g.

section {
display: flex;
}

= ruleset will define a section element as a parent flex container
e child elements may now accept flex declarations

= initial declaration, display: flex
e also includes default values for flexbox layout of child elements

= e.g. <div> elements in a section

e by default now arranged as equal sized columns with the same initial
height

CSS - Flexbox

axes

= elements arranged using flexbox are laid out on two axes

= main axis
e axis running in the direction of the currently laid out flex items
e e.g. rows or columns
e Slart and end of axis = main start & main end

= Cross axis
e axis running perpendicular to the current main axis
e start and end of axis = cross start & cross end

m each child element laid out inside flex container called a flex item

CSS - Flexbox

flex direction

= set a property for the flex direction
e defines direction of flex items relative to main axis
e je. layout direction for child elements

= default setting is row
» dlrection will be relative to current browser language setting
e e.g. for English language browsers = left to right

section {
flex-direction: column;

}

= override the default row setting
e arrange child items in a column

section {
display: flex;
flex-direction: column;

}

= ensures child flex items were 1aid out in a single column

= then override specific section elements
o allow child flex items in a row direction

#tabs {
flex-direction: row;

}

Image - CSS Flexbox

flex direction

spire and the signpost

Lorem Ipsum Dolor

Get Distance

footer tab 1 footer tab 2 footer tab 3

CSS Flexbox - flex direction

CSS - Flexbox

flex item wrapping

= ensure child items do not overlap their parent flex container
e add a declaration for flex-wrap to a required ruleset

e eg.

#tabs {
flex-direction: row;
flex-wrap: wrap;

}

without wrap

Image - CSS Flexbox

footer
tab 6

footer
tab 7

footer
tab 8

footer
tab 9

footer
tab
10

footer
tab
11

footer
tab
12

footer
tab
13

footer
tab
14

footer
tab
15

CSS Flexbox - no flex wrap

Image - CSS Flexbox

with wrap

spire and the signpost

Lorem Ipsum Dolor

Get Distance

footer tab 1 footer tab 2 footer tab 3 footer tab 4 footer tab 5 footer tab 6

footer tab 7 footer tab 8 footer tab 9 footer tab 10 footer tab 11

footer tab 12 footer tab 13 footer tab 14 footer tab 15

CSS Flexbox - flex wrap

Video - Flexbox

flexible design

Examples of Modular User Interface Design

Examples of Modular Ul Design

Source - Modular Ul Design - YouTube

https://www.youtube.com/watch?v=agPAklO7slY
https://www.youtube.com/watch?v=agPAklO7slY

CSS - Flexbox

flex direction reverse

= also set flex direction to reverse
e slarts flex items from the right on an English language browser

#tabs {
flex-direction: row-reverse;
flex-wrap: wrap;

}

Image - CSS Flexbox

flex direction reverse

spire and the signpost

Lorem Ipsum Dolor

Get Distance

footer tab 6 footer tab 5 footer tab 4 footer tab 3 footer tab 2 footer tab 1

footer tab 11 footer tab 10 footer tab 9 footer tab 8 footer tab 7

footer tab 15 footer tab 14 footer tab 13 footer tab 12

CSS Flexbox - flex direction reverse

CSS - Flexbox

flex-flow shorthand

= also combine direction and wrap into a single declaration
e flex-flow
e now contain values for both row andwrap
e 2g.

#tabs {
flex-flow: row wrap;

}

CSS - Flexbox

sizing of flex items

= for each flex item, we may need to specify apportioned space in
the layout
e e.g. set space as an equal proportion for each flex item
* we may add the following to a child item ruleset

div.fTab {
flex: 1;
}

= defines each child flex item <div class="fTab">
e occupy an equal amount of space within the given row
o after considering margin and padding

= n.b. this value is proportional
» doesn’t matter if the value is 1 or 100 &c.

= define additional flex proportions for specific child items
e eg.

div.fTab:nth-child(odd) {
flex: 2;
}

= each odd flex-item will now occupy twice available space
e space in the current direction

Image - CSS Flexbox
flex item sizing

spire and the signpost

Lorem Ipsum Dolor

Get Distance

footer tab 1 footer footer tab 3 footer footer tab 5 footer footer tab 7
tab 2 tab 4 tab 6

CSS Flexbox - flex item sizing

CSS - Flexbox

minimum size

= then set a minimum size for a flex item
e e.g.

div.fTab {
flex: 1 100px;

}

= Or a relative unit for the size

div.fTab {
flex: 1 20%;

}

= each flex item will initially be given a minimum
e e.g. 20% of the available space
e the remaining space will be defined relative to proportion units

Image - CSS Flexbox

flex item sizing

spire and the signpost

Lorem Ipsum Dolor

Get Distance

footer footer tab 2 footer footer tab 4 footer
tab 1 tab 3 tab 5
footer tab 6 footer tab 7

CSS Flexbox - flex item sizing - minimum size

CSS - Flexbox

flex item alignment

= Flexbox allows us to define alignment for flex items in each flex
container
e relative to the main and cross axes

= e.g. we might want to specify a centred alignment for flex items

#tabs {
flex-direction: row;
flex-wrap: wrap;
align-items: center;

}

= align-items: center
e causes flex item in flex container to be centred along the cross axis
o however, theyll still maintain their basic dimensions

= also modify value for align-items to either flex-start or flex-
end

= such values will align flex items to either start or end of cross axis

CSS - Flexbox

override align per flex item

= as with flex
» also override alignment per flex item
e usingalign-self property add a value for positioning

= e.g. a sample declaration might be as follows

div.fTab:nth-child(even) {
flex: 2;
align-self: flex-end;

}

CSS - Flexbox

justify content for flex item

= also specify justify-content for flex items in a flex container
o property allows us to define position of a flex item relative to main axis

m default value is flex-start

= then modify it relative to one of the following
e flex-end
e center

e space-around
o distributes each flex item evenly along main axis with space at either end

e space-between
o same as space-around without space at either end...

CSS - Flexbox

alignment and order - part 1

= define alignment relative to each axis using a specific declaration
e e.g. for the main we may use justify-content
e forthe cross axis we usealign-items

= also modify layout order of flex items
o without directly changing underlying source order

= use the following pattern to specify order

div.fTab:first-child {
order: 1;

}

m first flex item will now move to the end of the tab list

Image - CSS Flexbox

flex item order

spire and the signpost

Lorem Ipsum Dolor

Get Distance

footer footer footer footer
footer tab 2 tab 3 footer tab 4 tab 5 footer tab 6 tab 7 tab 1

CSS Flexbox - flex item order 1

CSS - Flexbox

alignment and order - part 2

= due to default order for flex items
o Dby default, all flex items have anorder value set to @

= higher the order value, later the item will appear in the list &c.

= items with the same order will revert to the order in the source
code

= also possible to ensure certain items will always appear first
e or atleast before default order values
e by using a negative value for the order declaration

e eg.

div.fTab:last-child {
order: -1;

}

CSS - Flexbox

nesting flex containers and items - part 1

= Flexbox can also be used to create nested patterns and structures
* e.g. we may set a flex item as a flex container for its child nodes

= we might add a banner to the top of a page

<section id="banner">
<header id="page-header">
<h3>spire and the signpost</h3>
<h5>point to the stars...</h5>
</header>
<section id="search">
<input type="text" id="searchBox"/>
<button id="searchBtn">Search</button>
</section>
</section>

CSS - Flexbox

nesting flex containers and items - part 2

= set #banner, #page-header, and #search as flex containers
e o.g.

#search {
display: flex;
}

= then specify various declarations for #search
e eg.

#tsearch {
display: flex;
flex-direction: row;
flex: 2;
align-self: flex-start;

= includes values for itself and any child elements
e /fwe then add some rulesets for the nested flex items

e &g

#tsearchBox {
flex: 4;
}

#tsearchBtn {
flex: 1;
}

= we get a simple proportional split of 4:1 for the input field to the
button

nested flex containers

Image - CSS Flexbox

spire and the signpost

point to the stars...

|

Get Distance

footer tab
7 footer tab 2

footer tab
3

footer tab 4

footer tab
5

footer tab 6

footer tab
1

CSS Flexbox - nested flex containers

Video - Flexible Design

fun designs

The 14 Best Examples of Responsive Design

Fun examples of responsive design - UP TO
0:51

Source - Example Responsive Ul Designs -
YouTube

https://www.youtube.com/watch?v=2mKvjEdvtNE
https://www.youtube.com/watch?v=2mKvjEdvtNE

building a web app - sample outline of underlying
structure

= apps developed using a full JavaScript stack

= using and incorporating JS into each part of app’s development
o Ul front-end
* gpp server and managemem‘
e data store and management

= Technologies will include
e front-end: HTMLS5, CSS, JS..
e app server: Node.js, Express...
e data store: MongoDB, Redis, Mongoose...

» Data format is JSON

Image - building a web app - sample outline

data store

| MongoDB |

data format language
I I
|| |sm————]
| BSON | | ————=] JavaScript | —————
| I [== |
I I I
I I |
| === I I I
| Mongoose |-————————-|
= I I
I |
I |
| | -==————]
| JS0N | === e | JS0N | m—————————————

app server

JS full-stack outline

UI front end

| HTML5, €SS, & JS |

language

| JavaScript I

n.b. I've explicitly omitted any arrows for flow within this diagram. This is
something we’ll return to as we start to work with Node.js, Mongoose,

and MongoDB.

JS Intro

= JavaScript (JS) a core technology for client-side design and
development

= now being used as a powerful technology to help us
e rapidly prototype and develop web, mobile, and desktop apps

= libraries such as jQuery, React, AngulardS, and Node.js

= helps develop cross-platform apps
e Apache Cordova
e Electron

= Embedded systems
e Espruino - htto.//www.espruino.com/
o Jessel - https.//tessel.io/

https://jquery.com/
http://facebook.github.io/react/
https://angularjs.org/
https://nodejs.org/en/
https://cordova.apache.org/
http://electron.atom.io/

JS Basics - operators

= operators allow us to perform
e mathematical calculations
e assign one thing to another
e compare and contrast..

= simple * operator, we can perform multiplication

2 ¥4

= we can add, subtract, and divide numbers as required
= mix mathematical with simple assignment

a = 4;
b=a+ 2;

JS Basics - some common operators - part 1

Assignment

m =

= eg:a = 4
Comparison

B < >KLK=) 0=

m eg:a <=b
Compound assignment
m 4=, -=, k= /=

= compound operators are used to combine a mathematical
operation with assignment

= same as result = result + expression
= eg:a += 4
Equality

operator description

== loose equals
=== strict equals
I= loose not equals

== strict not equals

JS Basics - some common operators - part 2

Increment/Decrement

= increment or decrement an existing value by 1
° ++, --

e eg.a++/sequaltoa = a + 1

Logical

= used to express compound conditionals - and, or
e &&, [/

e eg:a || b
Mathematical

u +7 _’ *) /

e eg:a * 4o0ra / 4
Object propertly access

= properties in objects are specific named locations for holding
values and data

m effectively, values within values

e eg.a.b means objecta with a property ofb

JS Basics - values and types

= able to express different representations of values
e often based upon need or intention
e known as types

= JS has built-in types
e allow us to represent primitive values
e eg: numbers, strings, booleans

= such values in the source code are simply known as literals

= literals can be represented as follows,

e Slring literals use double or single quotes eg: "some text" or 'some
more text'

e numbers and booleans are represented without being escaped eg. 49,
true;

= also consider arrays, objects, functions...

JS Basics - type conversion

= option and ability to convert types in JS
* /n effect, coerce our values and types from one type to another

= convert a number, or coerce it, to a string

= built-in JS function, Number (), is an explicit coercion
e explicit coercion, convert any type to a number type

= implicit coercion, JS will often perform as part of a comparison

u49u —= 49

= JS implicitly coerces left string to a matching number
» then performs the comparison

= often considered bad practice
e convert first, and then compare

= implicit coercion still follows rules
e can be very useful

JS Basics - variables - part 1

= symbolic container for values and data
= applications use containers to keep track and update values

= Use a variable as a container for such values and data
e allow values to vary over time

= JS can emphasize types for values, does not enforce on the
variable
e weak typing or dynamic typing
o JS permits a variable to hold a value of any type

= often a benefit of the language
= a quick way to maintain flexibility in design and development

JS Basics - variables - part 2

= declare a variable using the keyword var
= declaration does not include type information

var a = 49;

//double var a value

var a = a * 2;

//coerce var a to string

var a = String(a);

//output string value to console
console.log(a);

= var a maintains a running total of the value of a
= keeps record of changes, effectively state of the value
= state is keeping track of changes to any values in the application

JS Basics - variables - part 3

= use variables in JS to enable central, common references to our
values and data

= better known in most languages simply as constants

= JS is similar

creates a read-only reference to a value

value itself is not immutable, e.g. an object..

it'’s simply the identifier that cannot be reassigned
JS constants are also bound by scoping rules

= allow us to define and declare a variable with a value
e not intended to change throughout the application

= constants are often declared together
e uppercase is standard practice - although not a rule...

= form a store for values abstracted for use throughout an app
= JS normally defines constants using uppercase letters,

var NAME = "Philae";

= ECMAScript 6, ES6, introduces additional variable keywords

e e.g. const
const TEMPLE_NAME = "Philae";

= benefits of abstraction, ensuring value is not accidentally changed
e change rejected for a running app
e /nstrict mode, app will fail with an error for any change

JS Basics - comments

= JS permits comments in the code
= two different implementations

single line

//single Lline comment
var a = 49;

multi-line

/* this comment has more to say...
we'll need a second Lline */
var b = "forty nine";

JS Basics - logic - blocks

= simple act of grouping contiguous and related code statements
together
o known as blocks

= block defined by wrapping statements together
o within a pair of curly braces, { }

= blocks commonly attached to other forms of control statement

if (a > b) {
...do something useful...

}

JS Basics - logic - conditionals - part 1

= conditionals, conditional statements require a decision to be made

= code statement, application, consults state
o answer will predominantly be a simple yes or no

= JS includes many different ways we can express conditionals

= most common example is the if statement
e /fthis given condition is true, do the following...

if (a > b) {
console.log("a is greater than b...");

}

= if statement requires an expression between the parentheses
» evaluates as either true or false

JS Basics - logic - conditionals - part 2

= additional option if this expression returns false
» using an else clause

if (a > b) {

console.log("a is greater than b...");
} else {

console.log("no, b is greater...");

}

= for an if statement, JS expects a boolean

» JS defines a list of values that it considers fa/se
e €g.o..

= any value not on this list of /a/se values will be considered true
e coerced fo true when defined as a boolean

= conditionals in JS also exist in another form
o the switch statement
e /more fo come..

JS Basics - logic - loops

= |oops allow repetition of sets of actions until a condition fails
= repetition continues whilst the requested condition holds
= |oops take many different forms and follow this basic behaviour

= a loop includes the fest condlition as well as a block
o normally within curly braces
e block executes, an iteration of the loop has occurred

= good examples of this behaviour include while and do. . .while
loops

= basic difference between these loops, while and do. . .while
e condijtional tested is before the first iteration (while loop)
e after the first iteration (do. . .while) loop

= if the condition is initially false
e agwhile loop will never run
e gdo...while will run through for the first time

= also stop a JS loop using the common break statement

= for loop has three clauses, including
e /nitialisation clause
e conditional test clause
e update clause

JS Basics - logic - functions - part 1

= functions are a type of object
e may also have their own properties
e define once, then re-use as needed throughout our application

= function is a named grouping of code
e name can be called, and code will be run each time

= JS functions can be designed with optional arguments
e known as parameters
e allow us to pass values to the function

= functions can also optionally return a value

function outputTotal(total) {
console.log(total);

}
var a = 49;
a=a*3; //orusea * 3;

outputTotal(a);

JS Basics - logic - functions - part 2

function outputTotal(total) {
console.log(total);

}

function calculateTotal(amount, times) {
amount = amount * times;
return amount;

var a = 49;
a = calculateTotal(a, 3);
outputTotal(a);

= JSFiddle Demo

http://jsfiddle.net/ancientlives/0432kzb0/

JS Basics - logic - scope

= scope or lexical scope
o collection of variables, and associated access rules by name

= in JS each function gets its own scope

= variables within a function’s given scope
e can only be accessed by code inside that function

= variable name has to be unique within a function’s scope
= same variable name could appear in different scopes

= nest one scope within another

e code in inner scope can access variables from either inner or outer
scope

e code in outer scope cannot, by defaull, access code in the inner scope

JS Basics - logic - scope example

function outerScope() {
var a = 49;
//scope includes outer and inner
function innerScope() {
var b = 59;
//output a and b
console.log(a + b); //returns 108
}

innerScope();
//scope Limited to outer

console.log(a); //returns 49

//run outerScope function
outerScope();

= JSFiddle Demo

http://jsfiddle.net/ancientlives/7wgvkjub/

JS Basics - strict mode

= intro of ES5 - JS now includes option for strict mode
e ensures tighter code and better compliance...
e often helps ensure greater compatibility, safer use of language...
e can also help optimise code for rendering engines

= add strict at different levels within our JS code
e eg:. single function level or enforce for whole file

function outerScope() {
"use strict";
//code is strict

function innerScope() {
//code is strict

}
}

if we set strict mode for complete file - set at top of file

e all functions and code will be checked against strict mode
o eg: check against auto-create for global variables
o or missing var keyword for variables...

function outerScope() {
"use strict”;

a = 49; // “var® missing - ReferenceError

}

Video - JavaScript

strict mode

Strict Mode in JavaScript Explained [1/2]

JavaScript Strict Mode - UP TO 4:32

Source - JavaScript - Overview of Strict Mode

https://www.youtube.com/watch?v=w3xaL6jSOiI
https://www.youtube.com/watch?v=w3xaL6jSOiI

JS Core - values and types

= JS has typed values, not typed variables

= JS provides the following built-in types
o boolean
o null
e number
e object
o Sltring
o symbol (new in ES6)
e undefined

= more help provided by JS’s typeof operator
e examine a value and return its type

var a = 49;
console.log(typeof a); //result is a number

= as of ES6, there are 7 possible return types in JS

= NB: JS variables do not have types, mere containers for values
* values specify the type

var a = null;
console.log(typeof a); //result is object - Rnown bug in JS...

JS Core - objects - part 1

Objects

= object type includes a compound value
e JS can use to set properties, or named locations

= each of these properties holds its own value
e can be defined as any type

var objectA = {
a: 49,
b: 59,
c: "Philae"

}s
= access these values using either dot or bracket notation

//dot notation
objectA.a;
//bracket notation
objectA["a"];

JS Core - objects - example

// create object

var object = {
archive: 'waldzell',
access: 'castalia’,
purpose: 'gaming'

3

// log output with dot notation
console.log(archive is ${object.archive});

// log output with bracket notation - returns undefined
console.log(access is restricted to ${object[1]});

// log output with bracket notation
console.log(purpose is ${object['purpose’']});

Image - JS Object
I I
I I
a: 49 | b: 59 | c: "Philae"
I I
I I

JS Object

ES6 - template literals

// create object

var object = {
archive: 'waldzell',
access: 'castalia’,
purpose: 'gaming'

3

// log output with template Literals
console.log(archive is ${object.archive});

// log output
console.log('archive is

+ object.archive);

// log output all object properties with template Literals
console.log(archive = ${object.archive}, access = ${object.access}, purpose =
${object.purpose});

// log output all object properties

console.log('archive = ' + object.archive + ', access = ' + object.access + ' purpose = ' +
object.purpose);

JS Core - objects - part 2

Arrays

= JS array an object that contains values, of any type, in numerically
indexed positions
e Sfore a number, a string...
e array will start at index position 6
e increments by 1 for each new value

= arrays can also have properties
e eg. automatically updated length property

var arrayA = [
49,
59,
"Philae"
1
arrayA.length; //returns 3

= each value can be retrieved from its applicable index position,

arrayA[2]; //returns the string "Philae"

Image - JS Array

: 49

| |
| |
| 1: 59 | 2: "Philae"
| |
I I

JS Array

JS Core - objects - Arrays

examples

= Random Greeting Generator - Basic

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/

JS Core - checking equality - part 1

= JS has four equality operators, including two not equal
® == === !:} !::

= == - checks for value equality, whilst allowing coercion

m === - checks for value equality but without coercion

var a 49;

||49n;

var b

console.log(a == b); //returns true
console.log(a === b); //returns false

= first comparison checks values
e /fnecessary, try to coerce one or both values until a match occurs
» allows JS to perform a simple equality check
e results intrue

= second check is simpler
e coercion is not permitted, and a simple equality check is performed
e resullsinfalse

JS Core - checking equality - part 2

= which comparison operator should we use

» useful suggestions for usage of comparison operators
o use === [f either side of the comparison could be true or false

e use === [f either value could be one of the following specific values,
°©o, " []

e otherwise, it's safe to use ==
o simplify code in a JS application due to the implicit coercion.

= not equal counterparts, ! and !== work in a similar manner

JS Core - checking inequality - part 1

= known as relational comparison, we can use the inequality
operators,
° <, >, <=, >=

= inequality operators often used to check comparable values like
numbers
e /nherent ordinal check

= can be used to compare strings

"hello"” < "world"

= coercion also occurs with inequality operators
* o concept of strict inequality

var a 49;
n 59";

"69" ;

var b

var c

a < b; //returns true
b < c; //returns true

JS Core - checking inequality - part 2

= Wwe can encounter an issue when either value cannot be coerced
into @a number

var a = 49;
var b = "nice";

a < b; //returns false
a > b; //returns false
a == b; //returns false

= jssue for < and > is string is being coerced into invalid number
value, NaN

m == coerces string to NaN and we get comparison between 49 ==
NaN

JS Core - more variables - part 1

= a few rules and best practices for naming valid identifiers

= using typical ASCII alphanumeric characters
e an identifier must begin witha-z, A-Z, %, _
e may contain any of those characters, plus -9

= property names follow this same basic pattern
= careful not to use certain keywords, or reserved words

= reserved words can include such examples as,

e break, byte, delete, do, else, if, for, this, while and so
on

e further details are available at the W3 Schools site

= in JS, we can use different declaration keywords relative to
intended scope
e var forlocal, global for global..

= such declarations will influence scope of usage for a given
variable

= concept of hoisting
e defines the declaration of a variable as belonging to the entire scope
e by association accessible throughout that scope as well
e also works with JS functions - hoisted to the top of the scope

http://www.w3schools.com/js/js_reserved.asp

JS Core - more variables - part 2

= concept of nesting, and scope specific variables
= ES6 enables us to restrict variables to a block of code
= use keyword let to declare a block-level variable

if (a > 5) {
let b = a + 4;

console.log(b);

}

= |et restricts variable’s scope to if statement
= variable b is not available to the whole function

ES6 - 1let variable

// function
var archiveCheck = function (level) {
// add variable for archive

var archive = 'waldzell';
// specify purpose - default return
var purpose = 'restricted’;

// check access level

if (level === 'castalia') {
let purpose = 'gaming';
return purpose;

return purpose;

// log output - pass correct parameter value
console.log(archive purpose is ${archiveCheck('castalia')}");

// log output - pass incorrect parameter value
console.log(archive purpose is ${archiveCheck('mariafels')});

JS Core - let

example

= Random Greeting Generator - A bit better

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better/

Video - Variables

let and const

JavaScript Scope (Local vs Global)

JavaScript scope and variable usage - UP TO
2:30

Source - JavaScript scope and variables

https://www.youtube.com/watch?v=iJKkZA215tQ
https://www.youtube.com/watch?v=iJKkZA215tQ

JS Core - more variables - part 3

= add strict mode to our code

= without we get a variable that will be hoisted to the top either
e setas a globally available variable, although it could be deleted
o oritwill set a value for a variable with the matching name

= bubbled up through the available layers of scope

= becomes similar in essence to a declared global variable

= can create some strange behaviour in our applications
e [ricky and difficult to debug

= remember to declare your variables correctly and at the top

JS Core - more variables - example

var a;

function myScope() {
"use strict"”;

a = 49;
}
myScope()
a = 59;

console.log(a);

Demos

= ES6 (ES2015)
e let usage - Random Greeting Generator v0.2

= JS Arrays
o Random Greeting Generator - vO. 1

= JSFiddle
e Basic logic - functions
e PBasic logic - scope

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better/
http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/
http://jsfiddle.net/ancientlives/0432kzb0/
http://jsfiddle.net/ancientlives/7wgvkjub/

Resources

Example Responsive Ul Designs - YouTube
JavaScript - Overview of Strict Mode
JavaScript - Scope and variables

MDN - CSS Flexbox

MDN - JS

MDN - JS Data Types and Data Structures
MDN - JS Grammar and Types

MDN - JS Objects

Modular Ul Design - YouTube

W3 Schools - CSS Flexbox

W3 Schools - JS

https://www.youtube.com/watch?v=2mKvjEdvtNE
https://www.youtube.com/watch?v=w3xaL6jSOiI
https://www.youtube.com/watch?v=iJKkZA215tQ
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://www.youtube.com/watch?v=agPAklO7slY
https://www.w3schools.com/css/css3_flexbox.asp
http://www.w3schools.com/js/default.asp

