
Comp 324/424 - Client-side Web Design

Spring Semester 2020 - Week 9

Dr Nick Hayward

DEV Week Assessment

Course total = 25%

continue development of a web application
built from scratch
HTML5, CSS, plain JavaScript…

continue design and development of initial project outline and design

working app (as close as possible…)

NO content management systems (CMSs) such as Drupal, Joomla,
WordPress…

NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…

NO CSS frameworks, such as Bootstrap, Foundation, Materialize…

NO CSS preprocessors such as Sass…

NO template tools such as Handlebars.js &c.

data may be implemented from either
self hosted (MongoDB, Redis…)
APIs
cloud services (Firebase…)
NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

outline research conducted

describe data chosen for application

show any prototypes, patterns, and designs

DEV Week Demo

DEV week assessment will include the
following:

brief presentation or demonstration of current project work
~ 5 to 10 minutes per group

analysis of work conducted so far
e.g. during semester & DEV week

presentation and demonstration
outline current state of web app
explain what works & does not work
show implemented designs since project outline & mockup
show latest designs and updates

due Monday 16th March 2020 @ 4.15pm

HTML5, CSS, & JS - final thoughts

a basic app that records simple notes

many additional options we can add

some basic functionality is needed to make it useful
autosave - otherwise we lose our data each time we refresh the browser

edit a note

delete a note

add author information

additional functionality might include
save persistent data to DB, name/value pairs…

organise and view collections of notes

add images and other media
local and APIs

add contextual information
again, local and APIs

structure notes, media, into collection

define related information

search, sort…

export options and sharing…

security, testing, design patterns

Image - HTML5, CSS, & JS - DOM recap

Travel Notes - DOM recap

Image - Travel Notes - Series 1 - recap

Travel Notes - Series 1 - Demo 8 recap

HTML5, CSS, & JS - example - add-ons

new features and add-ons…

delete all notes

delete a single note

new event handlers

additional styling

HTML5, CSS, & JS - example - part 1.1

delete option - all notes

standard remove() function in jQuery

option to delete all notes from .note-output
add a new toolbar for note controls and options

then add some simple styling for this new toolbar

$("p").remove();

<section class="note-controls">
 <button id="notes-delete">Delete all</button>
</section>

/* note controls */
.note-controls {
 margin: 10px 0 10px 0;
 padding: 2px;
 border-bottom: 1px solid #dedede;
 display: none;
}
/* simplify default button styles for note controls */
.note-controls button {
 padding: 2px;
 margin: 2px;
 border-radius: 0;
 border: 1px solid #dedede;
 cursor: pointer;
}

HTML5, CSS, & JS - example - part 1.2

delete option - all notes - plain js

// delete all notes button
let deleteAll = document.getElementById('notes-delete');

// add event listener for delete all notes...
deleteAll.addEventListener('click', () => {
 // get notes from DOM
 let notes = noteOutput.querySelectorAll('p');
 // loop through notes and remove a single note per iteration...
 for (let note of notes) {
 note.remove();
 }
});

HTML5, CSS, & JS - example - part 2.1

delete option - all notes

note controls toolbar is hidden, by default in the CSS

need some way to check its visibility as we add our notes
no notes, then the toolbar is not required

simply checking a passed element to see whether it is hidden
then fadeIn() as necessary

can update this method later on to check hidden and visible

call this function as required

//check element visibility - expects single element relative to display:none
function checkVisible(element) {
 if (element.is(":hidden")) {
 element.fadeIn();
 }
}

checkVisible($(".note-controls"));

HTML5, CSS, & JS - example - part 2.2

delete option - all notes - plain js

use display property to check node

& usage with a defined node

// check visibility of passed node
function checkVisible(node) {
 // check passed node's current visibility
 if (node.style.display != 'block') {
 // show in DOM to allow fadeIn...
 node.style.display = 'block';
 // call fadeIn for node in DOM
 fadeIn(node);
 }
}

// define node to check...
let controls = document.getElementById('controls');
// call function
checkVisible(controls);

HTML5, CSS, & JS - example - part 2.3

delete option - all notes - plain js

use visibility property to check node

// check visibility of passed node
function checkVisible(node) {
 // check passed node's current visibility
 if (node.style.visibility = 'hidden') {
 // show in DOM to allow fadeIn...
 node.style.display = 'block';
 node.style.visibility = 'visible';
 // call fadeIn for node in DOM
 fadeIn(node);
 }
}

Video - HTML5, CSS, & JS

display vs visibility

CSS - Display versus Visibility - UP TO 1:46

Source - CSS Display and Visibility - YouTube

W3Schools CSS Display and Visibility TutorialW3Schools CSS Display and Visibility Tutorial

https://www.youtube.com/watch?v=gVt4qcfNLto
https://www.youtube.com/watch?v=gVt4qcfNLto

HTML5, CSS, & JS - example - part 3

delete option - all notes

add a note, the .note-controls toolbar is shown
delete all button now becomes available to our users

creating a new handler for the click events on the #notes-delete
button

hides its own container, the notes toolbar

then removes all of the notes, p, from the .note-output section

//handle deletion of all notes
$("#notes-delete").on("click", function(e) {
 var $note = $(".note-output p");
 $(this).parent().hide();
 $note.remove();
});

HTML5, CSS, & JS - example - part 4.1

JS code so far

//check element visibility - expects single element relative to display:none
function checkVisible(element) {
 if (element.is(":hidden")) {
 element.fadeIn();
 }
}
...
//handle deletion of all notes
$("#notes-delete").on("click", function(e) {
 var $note = $(".note-output p");
 $(this).parent().hide();
 $note.remove();
});

HTML5, CSS, & JS - example - part 4.2

JS code so far - plain JS

hide parent node for controls…

DEMO 1 - travel notes - series 2

// delete all notes button
let deleteAll = document.getElementById('notes-delete');

// add event listener for delete all notes...
deleteAll.addEventListener('click', () => {
 // hide parent controls node...
 deleteAll.parentNode.style.display = 'none';
 // get notes from DOM
 let notes = noteOutput.querySelectorAll('p');
 // loop through notes and remove a single note per iteration...
 for (let note of notes) {
 // remove single node
 note.remove();
 }
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo1/

HTML5, CSS, & JS - example - part 5

delete option - all notes

still making an assumption notes exist in the note-output section

add an additional function to check element exists in the DOM or
not

use length property - plain JS & jQuery

new function for checking elements in the DOM - plain JS &
jQuery

$("p").length

//check elements exists
function checkExist(element) {
 if (element.length) {
 return true;
 } else {
 return false;
 }
}

HTML5, CSS, & JS - example - part 6.1

delete option - all notes

updated delete all notes option to include check for notes

call checkExist() function in conditional statement

//handle deletion of all notes
$("#notes-delete").on("click", function(e) {
 //set note selector
 var $note = $(".note-output p");
 //check $note exists
 if (checkExist($note) === true) {
 //hide note-controls
 $(this).parent().hide();
 //remove all notes
 $note.remove();
 }
});

HTML5, CSS, & JS - example - part 6.2

delete option - all notes - plain JS

DEMO 2 - travel notes - series 2

// add event listener for delete all notes...
deleteAll.addEventListener('click', () => {
 // get notes from DOM
 let notes = noteOutput.querySelectorAll('p');
 // check notes in DOM
 if (checkExist(notes) === true) {
 // hide parent controls node...
 deleteAll.parentNode.style.display = 'none';
 // loop through notes and remove a single note per iteration...
 for (let note of notes) {
 // remove single node
 note.remove();
 }
 }
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo2/

Image - Travel Notes - Series 2 - demo 2

Travel Notes - Series 2 - Demo 2

Video - HTML5, CSS, & JS

white space / negative space - part 1

UI Design - How to use Negative Space in UI
Design - UP TO 3:32

Source - UI Design - White space or Negative
Space - YouTube

How to use Negative Space in UI DesignHow to use Negative Space in UI Design

https://www.youtube.com/watch?v=A0Ev_4zto4Y
https://www.youtube.com/watch?v=A0Ev_4zto4Y

HTML5, CSS, & JS - example - part 7

delete option - per note

consider adding a single delete option per note

allowing a user to selectively delete their chosen note
regardless of hierarchical position within the .note-output section

design decisions for such an option might include
do we offer a selection option, such as checkboxes, to select one or
more delete items

perhaps a single delete button per note

a drag and drop to delete option

there are many different ways to present and use this option

programmatically follow a similar pattern for deletion of the note

three jQuery functions can help us remove elements from a
document
remove()
detach()
replaceWith()

jQuery - removing elements - quick overview

used remove() function with delete all notes
best used to remove elements permanently from a document

will unbind any attached event handlers for elements being removed

will return reference to removed elements, but not the original bound
events

detach() often used for any temporary removal requirements
eg: update a lot of the DOM, detach affected elements, then insert later…

retains its event handlers, and we can add these elements later

then append the attached elements as required

replaceWith() replaces an element, or group of elements, with
passed element

event handlers for the replaced elements are unbound

$("p").detach();

var $detachP = $("p").detach();
$detachP.appendTo("#detached");

var $replacedP = $(".note-output p").first().replaceWith("<p>replaced...</p>");

HTML5, CSS, & JS - example - part 8.1

delete option - per note

simply need to delete the selected note
use the same remove() function for single and all notes

add option per note to allow user to delete a required note

add a delete button for each note
add programmatically with each new note

new function allows us to create simple buttons as required
a specified class and button text passed as parameters

use function to build required delete button in createNote() function

function createButton(buttonClass, buttonText) {
 var $button = $('<button class="'+buttonClass+'">'+buttonText+'</button>');
 return $button;
}

//create delete button
var $delete_button = createButton("note-delete", "delete");

HTML5, CSS, & JS - example - part 8.2

delete option - per note - plain js

then call as required,

// create button element - pass class and text
function createButton(btnClass, btnTxt) {
 // create button node
 let btnNode = document.createElement('button');
 // create button text node
 let btnTxtNode = document.createTextNode(btnTxt);
 // set attribute on button node
 btnNode.setAttribute('class', btnClass);
 // append text to button
 btnNode.appendChild(btnTxtNode);
 // return new button node with text and attribute...
 return btnNode;
}

// create delete button for note
let delButton = createButton('note-delete', 'delete');

HTML5, CSS, & JS - example - part 9.1

delete option - per note

append delete option to note
before adding note to the DOM in createNote function

function createNote() {
 ...
 //set content for note
 $note.html($note_text.val());
 //append delete button to each note
 $note.append($delete_button);
 ...
}

HTML5, CSS, & JS - example - part 9.2

delete option - per note - plain js

function createNote(input, output) {
 // get value from input field for note
 let inputVal = input.value;

 // check input value
 if (inputVal !== '') {
 // create p node
 let p = document.createElement('p');
 // create delete button for note
 let delButton = createButton('note-delete', 'delete');
 // prepend button to note
 p.prepend(delButton);
 // create text node
 let noteText = document.createTextNode(inputVal);
 // append text to paragraph
 p.appendChild(noteText);
 // append new paragraph and text to existing note output
 output.appendChild(p);
 // call custom animation for fade in...
 //fadeIn(p);
 // clear input text field
 input.value = '';
 }

 let controls = document.getElementById('app-controls');
 checkVisible(controls);
}

HTML5, CSS, & JS - example - part 10

delete option - per note

with jQuery
need to bind a click event to the dynamically created delete note button
plain JS option simpler

delete button is being added to the DOM dynamically
need to add handler for single note deletion event to existing DOM
element

add handler to parent .note-output and then new button.note-
delete

DEMO 3 - travel notes - series 2 - jQuery

$(".note-output").on("click", "button.note-delete" , function() {
 //delete parent note
 $(this).parent().remove();
 //set note selector
 var $note = $(".note-output p");
 //check for empty notes, and then remove note-controls
 if (checkExist($note) === false) {
 //hide note-controls
 $(".note-controls").hide();
 }
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo3/

Image - Travel Notes - Series 2 - demo 3

Travel Notes - Series 2 - Demo 3

HTML5, CSS, & JS - example - part 11

delete option - per note

now allow our users to delete a single note

single note option is awkward at the moment

simply allow a user to either mouseover or select a note to show
additional options
showing the available delete button

enable a user to select their note of choice
need to bind a click event to a note

user selects a note
no check for previous other visible delete buttons

ensure only delete button for selected note is shown

//handle click event per note
$(".note-output").on("click", "p", function() {
...
});

Image - HTML5, CSS, & JS - too many delete buttons

Travel Notes - Week 6 - Too many delete buttons

HTML5, CSS, & JS - example - part 12.1

delete option - per note

return to our earlier function, checkVisible()
modify to allow better abstraction and usage

modify to test for visibility
then simply return a boolean value

also need to modify check for the .note-controls in
createNote() function

//check element visibility - expects single element relative to display:none
function checkVisible(element) {
 //check if element is hidden or not
 if (element.is(":hidden")) {
 return true;
 } else {
 return false;
 }
}

...
//check visibility of note controls
if (checkVisible($(".note-controls")) === true) {
 $(".note-controls").fadeIn();
}
...

HTML5, CSS, & JS - example - part 12.2

delete option - per note - plain js

note delete button

note delete button with check for notes
no notes - hide delete all option

DEMO 3 - travel notes - series 2 - plain JS

// add delete button for current note
// use anonymous FN instead of arrow FN
// this binds to clicked DOM node
delButton.addEventListener('click', function () {
 console.log('note delete...', this.parentNode);
 this.parentNode.remove();
});

// add delete button for current note
// use anonymous FN instead of arrow FN
// this binds to clicked DOM node
delButton.addEventListener('click', function () {
 console.log('note delete...', this.parentNode);
 this.parentNode.remove();
 // get notes from DOM
 let notes = output.querySelectorAll('p');
 if (checkExist(notes) === false) {
 controls.style.display = 'none';
 }
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-3/

HTML5, CSS, & JS - example - part 13.1

delete option - per note

updated handler for note selection now checks for visible delete
buttons

bind handler for the user clicking on a note

check whether other delete buttons are visible on any other notes
if visible, we can simply hide these delete buttons

then show the delete option for the currently selected note

later abstract this function to handle other options associated with
each note

//handle click event per note
$(".note-output").on("click", "p", function() {
 //check if other delete buttons visible
 if (checkVisible($("button.note-delete")) === true) {
 $("button.note-delete").hide();
 }
 $(this).children("button.note-delete").show();
});

HTML5, CSS, & JS - example - part 13.2

delete option - per note - plain JS

check for current delete buttons per note
hide each delete button

then, show delete button for current note…

DEMO 4 - travel notes - series 2
jQuery

plain JS

// click listener for note
p.addEventListener('click', function() {
 // get notes delete buttons from DOM
 let delBtns = output.querySelectorAll('.note-delete');
 if (checkExist(delBtns) === true) {
 for (let btn of delBtns) {
 btn.style.display = 'none';
 }
 }
 this.querySelector('.note-delete').style.display = 'inline';
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/

HTML5, CSS, & JS - example - part 14

style note(s)

add some additional styling to our notes
start with some changes to the design of each note

then considered the overall .note-output section

remove styling for alternating notes, set uniform style per note

need to add some styling for our delete button, and position it
within each note

/* note paragraph output */
.note-output p {
 margin: 10px;
 padding: 10px;
 border: 1px solid #b1c4b1;
 cursor:pointer;
}

/* note delete button */
.note-output p button.note-delete {
 display: block;
 padding: 5px;
 margin: 5px 5px 10px 0;
 border-radius: 0;
 border: 1px solid #dedede;
 cursor: pointer;
}

HTML5, CSS, & JS - example - part 15

style note(s)

add some styling for the button’s hover pseudo-class
acts as useful feedback to the user that the button is an active element

also consider adding some similar feedback to our note
a sign of active as the user moves their mouse cursor over each note

DEMO 5 - travel notes - series 2
jQuery

plain JS

.note-output p button.note-delete:hover {
 background-color: #aaa;
 color: #fff;
}

/* note paragraph output hover */
.note-output p:hover {
 border: 1px solid #1a3852;
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/

HTML5, CSS, & JS - example - part 16

style note(s)

a couple of issues that still need to be fixed in the application
first issue is lack of consistency in styling our buttons

fixed by abstracting our CSS styling for a default button
specific button styles can be added later

removed the need for a ruleset to style the button for
adding a note, delete all notes, and the single delete button per note

/* default button style */
button {
 padding: 2px;
 margin: 2px;
 border-radius: 0;
 border: 1px solid #dedede;
 cursor: pointer;
}

HTML5, CSS, & JS - example - part 17

style note(s)

also create a default ruleset for a button hover pseudo-class
again reducing our need for repetition in the stylesheet

iterative development is fine
continue to abstract styles, overall design, and logic as we develop an
application

/* default button hover style */
button:hover {
 background-color: #aaa;
 color: #fff;
}

HTML5, CSS, & JS - example - part 18

style note(s)

second issue is the expected interaction with each note
issue is simply that a user cannot choose to remove this option

should be able to toggle its view and options

update interaction by modifying handler for click event on a note
NB: toggle() for events was removed in jQuery 1.9

build our own

DEMO 6 - travel notes - series 2

//handle click event per note
$(".note-output").on("click", "p", function() {
 //check if other delete buttons visible
 if (checkVisible($("button.note-delete")) === true) {
 //set all siblings to active=false to ensure checks are correct
 $(this).siblings().attr("active", "false");
 $("button.note-delete").hide();
 }
 //then handle click event for current note
 if (!$(this).attr("active") || $(this).attr("active") === "false") {
 $(this).attr("active", "true");
 $(this).children("button.note-delete").show();
 } else if ($(this).attr("active") === "true") {
 $(this).attr("active", "false");
 $(this).children("button.note-delete").hide();
 }
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo6/

HTML5, CSS, & JS - example - part 19

a few extras to consider…

alternative layouts
grid

squares

snippet view

table

lists…

notifications

snippets with expansion

split views
note snippet with contextual/media per note…

drag and drop delete

filters

sort options

tags

much, much more…

Image - Square notes - a bit of fun

Travel Notes - Week 6 - Squares

DEMO - travel notes - squares

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-squares/

Video - HTML5, CSS, & JS

white space / negative space - part 2

UI Design - How to use Negative Space in UI
Design - UP TO 5:17

Source - UI Design - White space or Negative
Space - YouTube

How to use Negative Space in UI DesignHow to use Negative Space in UI Design

https://www.youtube.com/watch?v=A0Ev_4zto4Y
https://www.youtube.com/watch?v=A0Ev_4zto4Y

JS Objects - quick recap - part 1

important JavaScript primitive
one of the most frequently used as well

created with curly braces,

access internal variables of this object using the dot . operator

update the value of an internal variable

var object1 = {
 "a":"nine",
 "b":"ten"
};

console.log(object1.a);

object1.a = "amelia";

JS Objects - quick recap - part 2

also create an empty variable, and then assign values as
necessary

an object can contain variables with values of different types

store variables in an object with types such as strings, arrays, and
even other objects

function variables behave just like any other variables in
JavaScript
we can also store them in our objects as needed

simply attach a function to a jQuery object

var object1 = {};

var $a = $("p");
$a.hide();

JSON - quick recap

a JSON object is effectively a JavaScript object
contained within curly braces

objects can contain multiple name/value pairs

object stored in the form of a string

to send a JS object
create it in the application’s code

then convert it to a string

finally use it as required

a lot of the AJAX is abstracted to JavaScript libraries

{
 "country":"France",
 "city":"Marseille"
}

JSON - pros and cons

useful pros

more concise, less verbose than XML and HTML
potentially faster execution of data…

regularly used with JavaScript
includes good support

language agnostic, interoperability
can be used with many different programming languages

can also be called from many different domains
eg: JSON-P…

some cons

may present security risk
malicious content due to JavaScript XSS

need to verify source for JSON…

syntax is precise, unforgiving

JS and JSON - functions

creating some JSON string is easy enough

also easily create a JSON string from a JavaScript object
and vice-versa

use the JavaScript stringify function

similarly parse a JSON string to a JS object

var jsonObject1 = JSON.stringify(object1);
console.log(jsonObject1);

var object2 = JSON.parse(jsonObject1);
console.log(object2);

AJAX and JSON - part 1

intro

AJAX is a simple way to load data
often new or updated data

into a current page without having to refresh the browser window

common form of data for work with AJAX is JSON

many common usage scenarios and examples for AJAX
autocomplete in forms

live filtering of search queries

real-time updates for content and data streams

also use AJAX to help us load data behind the scenes
preparing content for our users before a specific request is received

helps to speed up page responses and data load times

AJAX uses an asynchronous model for processing requests

user can continue to perform various tasks, queries, and work
whilst the browser itself continues to load data

inherent benefit of AJAX should include
a more responsive site, intuitive usage and interface experience

AJAX and JSON - part 2

asynchronous model

traditional synchronous model normally stops a page
until it has loaded and processed a requested script

AJAX enables a browser to request data from the server
without this synchronous pause in usage

AJAX’s asynchronous processing model

often known as non-blocking

allows a page to load data and process user’s interactions

server responds with the requested data
an event will be fired by the browser

event can then call a function to process the data

often JSON, XML, or simply HTML

browser will use an XMLHttpRequest object to help handle these
AJAX requests

browser will not wait for a response

Video - HTML5, CSS, & JS

AJAX requests

AJAX requests & Twitter - UP TO 2:55

Source - What is AJAX? - YouTube

What Is Ajax?What Is Ajax?

https://www.youtube.com/watch?v=3l13qGLTgNw
https://www.youtube.com/watch?v=3l13qGLTgNw

JSON and jQuery - get a file - part 1

initial setup

try some AJAX with a JSON file

save this content to our docs/json/trips.json file

run on a server, local or remote
browser security restrictions for JavaScript

local server such as XAMPP, Python’s SimpleHTTPServer, Node.js…

initially use the getJSON() function to test reading this content

console output is expected JSON object

{
 "country":"France",
 "city":"Marseille"
}

python -m SimpleHTTPServer 8080

$.getJSON("docs/json/trips.json", function(trip) {
 console.log(trip);
});

Object { country: "France", city: "Marseille" }

JSON and jQuery - get a file - part 2

test with site

now use this return object to load our data as required within a site

DEMO - AJAX 1 - AJAX - demo 1

//overall app logic and loader...
function loadJSON() {
 "use strict";

 $.getJSON("docs/json/trips.json", function(trip) {
 //element for trip data
 var $tripData = $("<p>");
 //add some content from json to element
 $tripData.html(trip.city + ", " + trip.country);
 //append content to .note-output section
 $(".note-output").append($tripData);
 });
};

$(document).ready(loadJSON);

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-ajax1/

JSON and jQuery - get a file - part 3

array for trips…

Whilst the previous example is useful, for our
application we obviously need to store multiple
trips. So, multiple countries, multiple cities, and
so on. Therefore, we need to consider working
with JSON arrays. We’ll update our
trips.json file as follows to test loading
cities,

{
 "cities": [
 {
 "name": "Marseille",
 "region": "Provence-Alpes-Côte d'Azur"
 },
 {
 "name": "Paris",
 "region": "Île-de-France"
 }
]
}

JSON and jQuery - get a file - part 4

load an array for trips…

update JavaScript to load array and set data as required

DEMO - AJAX 2 - AJAX - demo 2

//overall app logic and loader...
function loadJSON() {
 "use strict";

 $.getJSON("docs/json/trips.json", function(trips) {
 //element for trip data
 var $cityData = $("");

 //iterate over cities array - trips.cities...
 var $cities = trips.cities;
 $cities.forEach(function (item) {
 var $city = $("");
 $city.html(item.name + " in the region of " + item.region);
 $cityData.append($city);
 })
 //append list to .note-output
 $(".note-output").append($cityData);
 });
};

$(document).ready(loadJSON);

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-ajax2/

Ajax, JSON & jQuery - part 1

jQuery Deferred

jQuery provides a useful solution to the escalation of code for
asynchronous development

known as the $.Deferred object
effectively acts as a central despatch and scheduler for our events

with the deferred object created
parts of the code indicate they need to know when an event completes

whilst other parts of the code signal an event’s status

deferred coordinates different activities
enables us to separate how we trigger and manage events

from having to deal with their consequences

Ajax, JSON & jQuery - part 2

using deferred objects

now update our AJAX request with deferred objects

separate the asynchronous request
into the initiation of the event, the AJAX request

from having to deal with its consequences, essentially processing the
response

separation in logic
no longer need a success function acting as a callback parameter to the
request itself

now rely on .getJSON() call returning a deferred object

function returns a restricted form of this deferred object
known as a promise

deferredRequest = $.getJSON (
 "file.json",
 {format: "json"}
);

Ajax, JSON & jQuery - part 3

using deferred objects

indicate our interest in knowing when the AJAX request is
complete and ready for use

key part of this logic is the done() function

specifying a new function to execute
each and every time the event is successful and returns complete

our AJAX request in this example

deferred object is able to handle the abstraction within the logic

if the event is already complete by the time we register the
callback via the done() function
our deferred object will execute that callback immediately

if the event is not complete
it will simply wait until the request is complete

deferredRequest.done(function(response) {
 //do something useful...
});

Ajax, JSON & jQuery - part 4

handling errors with deferred objects

also signify interest in knowing if the AJAX request fails

instead of simply calling done(), we can use the fail() function

still works with JSONP
the request itself could fail and be the reason for the error or failure

deferredRequest.fail(function() {
 //report and handle the error...
});

Ajax, JSON & jQuery - part 5

example

add the option to read and write from a JSON file

we’ll use AJAX for these requests

initially we can consider our application as follows
read data from JSON file

load initial data to application

no edit features for now

add edit features with DB

Ajax, JSON & jQuery - part 6

example - JSON

test reading and loading JSON file and data

ignore standard AJAX pattern
passing two callbacks, success and error

use deferred and promise
initial JSON for Travel Notes app

{
 "travelNotes": [{
 "created": "2015-10-12T00:00:00Z",
 "note": "a note from Cannes..."
 }, {
 "created": "2015-10-13T00:00:00Z",
 "note": "a holiday note from Nice..."
 }, {
 "created": "2015-10-14T00:00:00Z",
 "note": "an autumn note from Antibes..."
 }]
}

Ajax, JSON & jQuery - part 7

example - deferred

start by submitting a query for the required JSON file

then retain the deferred object we’re using for tracking

then indicate interest in knowing when AJAX request is complete

//load main app logic
function loadApp() {
 "use strict";

 var $deferredNotesRequest = $.getJSON (
 "docs/json/notes.json",
 {format: "json"}
);

 $deferredNotesRequest.done(function(response) {
 console.log("tracking json...");
 });

};
$(document).ready(loadApp);

Ajax, JSON & jQuery - part 8

example - deferred

done() method is the key part

helps us specify the required logic to execute
when the request is complete

if the given event has already completed as callback is registered
via done()
deferred object will execute required callback immediately

if not, it will simply wait until request is complete

respond to an error
add fail() method for errors handling and reporting

Ajax, JSON & jQuery - part 9

example - work with data

returned data
our response returns an object containing an array with notes

we could simply extract the required notes
then append them to the DOM

DEMO - ajax & json basic loader

$deferredNotesRequest.done(function(response) {
 //get travelNotes
 var $travelNotes = response.travelNotes
 //process travelNotes array
 $travelNotes.forEach(function(item) {
 if (item !== null) {
 var note = item.note;
 //create each note's <p>
 var p = $("<p>");
 //add note text
 p.html(note);
 //append to DOM
 $(".note-output").append(p);
 }
 });
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week10/ajax-json1/

Image - HTML5, CSS, & JS - AJAX & JSON

AJAX & JSON - basic loader

Ajax, JSON & jQuery - part 10

example - work with data

we can use simple deferred requests with our local JSON data

with staggered API calls to data, need to use slightly modified
approach
digging through data layer by layer

submitting a request as one layer returns

we could now create a second deferred object
use to track additional processing requests

stagger our requests to the API

ensuring we only request certain data as needed or available

also create multiple deferred objects to handle our requests and
returned data
allows us to respond accordingly within the application

Ajax, JSON & jQuery - part 11

example - work with data

resolve()

use this method with the deferred object to change its state,
effectively to complete

as we resolve a deferred object
any doneCallbacks added with then() or done() methods will be called

these callbacks will then be executed in the order added to the object

arguments supplied to resolve() method will be passed to these
callbacks

promise()

useful for limiting or restricting what can be done to the deferred
object

method returns an object with a similar interface to a standard
deferred object
only has methods to allow us to attach callbacks

does not have the methods required to resolve or reject deferred object

restricting the usage and manipulation of the deferred object
eg: offer an API or other request the option to subscribe to the deferred
object

NB: they won’t be able to resolve or reject it as standard

function returnPromise() {
 return $.Deferred().promise();
}

Ajax, JSON & jQuery - part 12

example - work with data

still use the done() and fail() methods as normal

use additional methods with these callbacks including the then()
method

use this method to return a new promise
use to update the status and values of the deferred object

use this method to modify or update a deferred object as it is resolved,
rejected, or still in use

can also combine promises with the when() method
method allows us to accept many promises, then return a sort of master
deferred

updated deferred object will now be resolved when all of the
promises are resolved
it will likewise be rejected if any of these promises fail

use standard done() method to work with results from all of the
promises
eg: could use this pattern to combine results from multiple JSON files

multiple layers within an API

staggered calls to paged results in a API…

Ajax, JSON & jQuery - part 13

example - work with data

now start to update our test AJAX and JSON application
begin by simply abstracting our code a little

DEMO - ajax & json abstract loader

function buildNote(data) {
 //create each note's <p>
 var p = $("<p>");
 //add note text
 p.html(data);
 //append to DOM
 $(".note-output").append(p);
}

//get the notes JSON
function getNotes() {
 //.get returns an object derived from a Deferred object - do not need explicit deferred

object
 var $deferredNotesRequest = $.getJSON (
 "docs/json/notes.json",
 {format: "json"}
);
 return $deferredNotesRequest;
}

http://linode4.cs.luc.edu/teaching/cs/demos/424/week10/ajax-json2/

Ajax, JSON & jQuery - part 14

example - work with data

requesting our JSON file using .getJSON()
we get a returned promise for the data

with a promise we can only use the following
deferred object’s method required to attach any additional handlers

or determine its state

our promise can work with
then, done, fail, always…

our promise can’t work with
resolve, reject, notify…

Ajax, JSON & jQuery - part 15

example - work with data

one of the benefits of using promises is the ability to load one
JSON file
then wait for the results

then issue a follow-on request to another file

…

a simple example of chained then() methods

outputting a limited test result to the DOM and the console

as we chain our then() methods
pass returned results to next chained then() method…

DEMO - ajax & json deferred .then()

getNotes().then(function(response1) {
 console.log("response1="+response1.travelNotes[2].note);
 $(".note-output").append(response1.travelNotes[2].note);
 return getPlaces();
}).then(function(response2) {
 console.log("response2="+response2.travelPlaces[2].place);
 $(".note-output").append(response2.travelPlaces[2].place);
});

http://linode4.cs.luc.edu/teaching/cs/demos/424/week10/ajax-json3/

JavaScript extras - API examples

further API examples

Google Maps & Places

Google Distance Matrix

Google Maps markers & resizing

Twitter
user queries &c.

OAuth based login and authentication

Yelp
custom server and remote API query

sample handling of local API for queries

YouTube
custom query

custom with account authentication

search and playback

…

Demos

Travel notes app - series 2 - jQuery
DEMO 1 - travel notes - demo 1

DEMO 2 - travel notes - demo 2

DEMO 3 - travel notes - demo 3

DEMO 4 - travel notes - demo 4

DEMO 5 - travel notes - demo 5

DEMO 6 - travel notes - demo 6

Travel notes app - series 2 - plain JS
DEMO 3 - travel notes - series 2 - plain JS

DEMO 4 - travel notes - series 2 - plain JS

DEMO 5 - travel notes - series 2 - plain JS

AJAX
DEMO 1 - AJAX - demo 1

DEMO 2 - AJAX - demo 2

AJAX and JSON - jQuery
abstract code for load a JSON file

load a JSON file

test deferred .then()

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo1
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo2
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo3
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo4
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo5
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo6
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-ajax1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-ajax2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week10/ajax-json2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week10/ajax-json1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week10/ajax-json3/

Resources

jQuery
jQuery

jQuery API

jQuery - deferred

jQuery - .getJSON()

jQuery - JSONP

jQuery - promise

MDN
MDN - JS

MDN - JS Const

MDN - JS - Iterators and Generators

MDN - JS Objects

Videos
CSS Display and Visibility - YouTube

UI Design - White space or Negative Space - YouTube

What is AJAX? - YouTube

https://jquery.com/
https://api.jquery.com/
https://api.jquery.com/jquery.deferred/
http://api.jquery.com/jQuery.getjson/
https://learn.jquery.com/ajax/working-with-jsonp/
https://api.jquery.com/promise/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://www.youtube.com/watch?v=gVt4qcfNLto
https://www.youtube.com/watch?v=A0Ev_4zto4Y
https://www.youtube.com/watch?v=3l13qGLTgNw

