
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

CSS	-	Basics
A	brief	introduction	to	the	basics	of	CSS.

Contents

Intro
CSS	syntax

rulesets
comments
display

Display	and	elements
inline
block-level

CSS	selectors
classes
pseudoclasses
complex	selectors

Cascading	rules
Inheritance
Fonts

relative	and	 em
relative	and	 rem
custom	web	fonts

References

Intro

A	Cascading	Style	Sheet,	or	CSS,	allows	us	to	define	stylistic	characteristics	for	our	HTML.	In	effect,	it	helps	us
define	how	our	HTML	is	displayed	and	rendered.	The	colours	used,	font	sizes,	borders,	padding,	margins,	links,	and
so	on.

CSS	syntax

CSS	follows	a	defined	syntax	pattern,	which	may	be	defined	as	follows

selector
e.g.	 body 	or	 p

declaration
property	and	value	pairing

For	example,

		body	{
				color:	black;
				font-family:	"Times	New	Roman",	Georgia,	Serif;
		}

So,	in	this	example	 body 	is	the	selector,	 color 	is	the	property,	and	 black 	is	the	value.

Image	-	CSS	Syntax

rulesets

In	essence,	a	CSS	file	is	a	group	of	rules	for	styling	our	HTML	documents.	These	rules	form	rulesets,	which	can	be
applied	to	elements	within	the	DOM	of	our	HTML	documents.

Rulesets	consist	of	the	following,

a	selector
eg	 p

an	opening	brace
{

a	set	of	rules
color:	blue

a	closing	brace
}

So,	each	rule	can	be	considered	as	containing	a	specific	property,	followed	by	a	colon,	plus	our	required	value	(or	list
of	values	separated	by	spaces),	followed	by	a	semi-colon.	So,	as	seen	earlier,	our	ruleset	might	look	as	follows,

		body	{
				width:	900px;
				color:	#444;
				font-family:	"Times	New	Roman",	Georgia,	Serif;
				}

Our	example	includes	a	selector	for	the	 body 	element,	and	our	required	rules.	This	set	of	rules	will	be	applied	to	all
content	of	the	 body 	element,	including	any	elements	contained	within	the	 body 	element.	This	ruleset,	therefore,
contains	three	rules,	each	respectively	specifying	a	width	property,	a	value	for	the	colour	property,	and	the	available
fonts	for	our	text	content.

As	you've	probably	noticed,	colour	can	be	set	to	a	named	value	(e.g.	 blue)	or	HEX	value	(e.g.	 #444).	There's	a	fun
and	useful	colour	picker	at	the	following	URL,

HTML	Colour	Picker

comments

We	can	also	add	comments	to	help	describe	the	selector	and	its	properties,

		/*	add	styling	to	paragraphs	*/
		p	{
				color:	blue;
				font-size:	14px;
				}

Comments	can	be	added	before	the	selector	or	within	the	braces.

display

For	the	majority	of	cases,	we	can	display	HTML	elements	in	one	of	two	ways.	We	can	use	inline,	which	applies	to
elements	such	as	 <a> 	or	 ,	to	display	content	that	will	appear	contiguously	on	the	same	line	as	the
surrounding	content.

For	example,

<div	class="content">
		<p>
				Philae	is	a	Ptolemaic	era	temple	in	Egypt.
		</p>
</div>

However,	it's	more	common	to	display	elements	as	 block-level 	instead	of	 inline 	elements.	Basically,	this
means	that	the	element's	content	will	be	rendered	on	a	new	line	outside	the	normal	flow	of	our	content.	A	few	sample
block	elements	include

article,	div,	figure,	main,	nav,	p,	section...

It's	interesting	to	note	that	block-level	is	not	technically	defined	for	new	elements	in	HTML5.

Display	and	elements

We	may	consider	the	display	of	elements	using	CSS	relative	to	the	following:

inline

Current	inline	elements	include:

b	|	big	|	i	|	small	|	tt
abbr	|	acronym	|	cite	|	code	|	dfn	|	em	|	kbd	|	strong	|	samp	|	var
a	|	bdo	|	br	|	img	|	map	|	object	|	q	|	script	|	span	|	sub	|	sup
button	|	input	|	label	|	select	|	textarea

Source	-	MDN	-	Inline	Elements

http://www.w3schools.com/colors/colors_picker.asp
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elemente

n.b.	not	all	inline	elements	supported	in	HTML5

block-level

Current	block-level	elements	include:

address	|	article	|	aside	|	blockquote	|	canvas	|	dd	|	div	|	dl
fieldset	|	figure	|	figcaption	|	footer	|	form
h1	|	h2	|	h3	|	h4	|	h5	|	h6
header	|	hgroup	|	hr	|	main	|	nav	|	noscript
ol	|	output	|	p	|	pre	|	section	|	table	|	tfoot	|	ul	|	video

Source	-	MDN	-	Block-level	Elements

n.b.	block-level	is	not	technically	defined	for	new	elements	in	HTML5

CSS	selectors

Effective	use	and	manipulation	of	selectors	is	a	crucial	aspect	of	working	with	CSS	and	JavaScript	as	well.	We've
already	encountered	basic	selectors,	such	as

		p	{
				color:	#444;
		}

Don't	forget	,	 p 	is	the	selector,	 color 	is	the	property,	and	 #444 	is	the	value

The	above	ruleset	is	adding	basic	styling	to	our	paragraphs,	setting	the	text	colour	to	HEX	value	444,	a	dark	grey.	This
is	simple,	and	easy	to	apply,	but	it	applies	the	same	properties	and	values	to	all	paragraphs.	If	we	want	to	be	more
specific,	for	example,	we	need	to	use	classes,	psuedoclasses,	and	other	selectors.

classes

We	can	add	a	class	attribute	to	an	element,	such	as	a	 <p> 	or	a	 ,	thereby	helping	us	differentiate	elements.
We	can	also	add	a	class	to	any	DOM	element.	For	example,	we	could	now	add	different	classes	to	multiple	 <p>
elements,

<p	class="p1">paragraph	one...</p>
<p	class="p2">paragraph	two...</p>

By	adding	these	classes,	we	can	now	select	our	paragraphs	by	class	name	within	the	DOM.	We	can	then	apply	a
ruleset	for	each	class.	We	can	be	specific,	and	style	this	class	for	a	specific	element

p.p1	{
		color:	#444;
}

Or,	we	could	simply	style	the	class	itself

.p1	{
		color:	#444;
}

The	above	example	will	style	all	elements	with	the	class	 p1 ,	and	not	just	 <p> 	elements	with	that	class.	Classes	are
very	useful	for	styling	groups	of	elements	together,	or	abstracting	styling	to	one	ruleset	and	applying	to	multiple
different	elements.

https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements

pseudoclasses

As	with	classes	in	the	previous	example,	we	can	add	a	class	to	links	or	anchors,	thereby	styling	all	links	with	the	same
ruleset.	However,	we	might	also	want	to	add	specific	styles	for	different	link	states.	For	example,	styling	links	with	a
different	colour	depending	upon	whether	a	link	has	already	been	visited	or	not.

CSS	allows	us	to	add	an	additional	ruleset	for	such	an	example,

a	{
		color:	blue;
}

a:visited	{
		color:	red;
}

In	the	above	example,	 visited 	is	a	CSS	pseudoclass	applied	to	the	 <a> 	element.	The	main	difference	is	that	a
browser	implicitly	adds	this	pseudoclass	for	us,	we	just	need	to	provide	the	styling	in	the	CSS.	We	don't	need	to	add
anything	to	the	HTML	for	the	link,	for	example.

Likewise,	we	can	use	another	pseudoclass	to	help	us	style	our	links	when	a	user	hovers	their	cursor	over	an	 <a>
element.	So,	we	can	now	style	our	links	for	hover

a:hover	{
		color:	black;
		text-decoration:	underline;
}

Again,	the	browser	will	implicitly	set	this	pseudoclass	in	the	HTML	for	us.

complex	selectors

As	we	build	our	websites	and	applications,	our	DOM	will	often	become	more	complicated	and	detailed.	The	depth	and
complexity	will	require	more	complicated	selectors	as	well.	If	we	consider	lists,	and	their	varying	depths

		unordered	first
		unordered	second
		unordered	third

		ordered	first
		ordered	second
		ordered	third

So,	we	now	have	two	lists,	one	unordered	and	the	other	ordered.	We	can	style	each	list,	and	the	list	items,	as	we've
already	seen.	We	simply	create	our	rulesets	for	the	given	selectors.

For	example,

ul	{
		border:	1px	solid	#ddd;
}

ol	{
		border:	1px	solid	#ccc;
}

We	could	also	add	a	single	ruleset	for	the	list	items,	 ,	but	we'd	be	applying	the	same	style	properties	to	both
types	of	lists.	If	we	wanted	to	be	more	specific,	we	could	apply	a	ruleset	to	each	list	item	for	the	different	lists.	For
example,

ul	li	{
		color:	blue;
}

ol	li	{
		color:	green;
}

Now,	it	might	also	be	useful	to	set	the	background	for	specific	list	items	in	each	list,	therefore	making	it	easier	to
visualise	the	first	list	item,	for	example

li:first-child	{
		background:	#eee;
}

We	can	take	this	another	step,	and	set	a	pseudoclass	of	 nth-child 	thereby	allowing	us	to	specify	a	style	for	the
second,	fourth	&c.	child	in	the	list.

li:nth-child(2)	{
		background:	#ddd;
}

For	a	bit	of	fun,	we	could	take	this	even	further	and	style	odd	and	even	list	items	to	create	a	useful	alternating	pattern.
This	is	particularly	useful,	as	you	might	imagine,	for	styling	tables.	For	example,

li:nth-child(odd)	{
		background:	#bbb;
}
li:nth-child(even)	{
		background:	#ddd;
}

For	a	table,	we	could	simply	update	the	selectors	for	each	pseudoclass	to	reflect	a	 <tr> .

We	can	take	this	yet	another	step,	and	select	only	certain	list	items,	or	rows	in	a	table	&c.,	such	as	selecting	every
fourth	list	item,	starting	at	the	first	one.	For	example,	our	CSS	would	be	as	follows

li:nth-child(4n+1)	{
		background:	green;
}

In	fact,	for	the	even	and	odd	children	we	are	simply	leveraging	the	above	in	a	pre-configured	package.	Other
examples	include

last-child

nth-last-child()

and	so	on.

Cascading	rules

As	the	name	suggests,	CSS,	or	cascading	style	sheet,	employs	a	set	of	cascading	rules,	which	are	applied	by	each
browser	if	and	when	a	ruleset	conflict	arises.

For	example,	consider	the	simple	issue	of	specificity.	If	we	create	a	ruleset	for	a	 <p> 	element,	and	then	another	for	a	
<p> 	element	with	a	class	 p1 ,	the	more	specific	rule,	the	class,	will	take	precedence.

p	{
		color:	blue;
		}

p.p1	{
		color:	red;
}

However,	there	is	also	the	issue	of	possible	duplication	in	rulesets.	If	we	had	two	rulesets	for	the	same	element,	for
example

h3	{
		color:	black;
}

h3	{
		color:	blue;
}

the	cascading	rules	of	CSS	dictate	that	the	later	ruleset	in	the	CSS	list	will	be	the	one	applied.

For	this	example,	we	would	end	up	with	 <h3> 	elements	styled	in	blue.

So,	hopefully,	you	can	already	see	how	simple	styling	and	rulesets	can	quickly	become	compounded	and	complicated.
Different	styles,	specified	in	different	places,	can	interact	and	affect	each	other	in	complex	ways.	This	can	become	a
powerful	feature	of	CSS,	but	it	can	also	create	many	issues	with	logic,	maintenance,	and	design.

Therefore,	we	can	often	consider	three	primary	sources	of	style	information,	relative	to	our	documents,	that	form	this
cascade.	They	include,

default	styles	applied	by	the	browser	for	a	given	markup	language
e.g.	colours	for	links,	size	of	headings,	and	so	on...

styles	specific	to	the	current	user	of	the	document
often	affected	by	browser	settings,	device,	mode...

styles	linked	to	the	document	by	the	designer
as	we've	seen,	such	styles	can	be	linked	in	three	ways	including	an	external	file,	embedded	in	a	definition	at
the	beginning	of	the	document,	and	as	inline	styles	per	element.

The	basic	cascading	nature	of	these	options	means	that	the	following	applies,

browser's	style	will	be	default
user's	style	will	modify	the	browser's	default	style
the	styles	of	the	document's	designer	will	then	modify	the	overall	styles	further

So,	as	we	read	documents	in	a	browser,	our	styles	might	be	applied	in	a	cascading	nature	from	multiple	sources.	The
whole	becomes	the	document	that	we	see	and	use	within	our	browser.

For	example,	a	rendered	document	may	include	some	styles	from	the	browser's	defaults	for	HTML.	Then	another	part
of	the	rendered	style	might	come	from	customised	browser	settings	or	style	definition	files.	For	example,	a	user	may
customise	their	browser	preferences	or	specify	custom	behaviours,	which	are	then	applied	by	the	browser	for
rendering	documents.	Finally,	we	will	also	see	styles	applied	from	stylesheets	linked	to	the	document	itself,	or	other
embedded	styles.	It's	not	quite	as	simple	as	just	looking	at	the	linked	CSS	files.

So,	to	reiterate,	for	our	styles	in	a	cascade,	a	designer's	stylesheets	have	priority,	then	user's	stylesheets,	and	then
the	browser's	own	defaults.

Inheritance

CSS	also	includes	an	interpretation	of	the	concept	of	inheritance	for	its	styles.	So,	descendants	will	inherit	properties
from	their	ancestors.

For	example,	if	we	create	a	style	on	an	element,	all	descendants	of	that	element	within	the	DOM	will	also	inherit	that
style.	This	will	apply	unless	the	style	is	then	overridden	by	another	ruleset	that	specifically	targets	that	element.

body	{
		background:	blue;
}

p	{
		color:	white;
}

As	 p 	is	a	descendant	of	 body 	in	the	DOM,	it	will	inherit	the	background	colour	of	the	body.	So,	we	can	set	our
paragraphs'	text	colour	to	correctly	show	against	the	specified	background	colour.	White	text	colour	against	a	blue
background.

This	characteristic	of	CSS	is	an	important	feature,	and	it	helps	to	reduce	redundancy	and	repetition	of	styles.	It	is	also
another	reason	why	it	is	useful	to	maintain	an	outline	of	the	DOM	structure	for	a	given	HTML	document.

Again,	however,	there	is	a	small	caveat	to	this	characteristic	of	CSS.	Whilst	most	styles	will	happily	follow	this	pattern,
not	all	properties	are	inherited	by	default.	For	example,	properties	related	to	block-level	elements	are	a	notable	issue
with	inheritance.	Margin,	padding,	and	border	rules	are	not	inherited	from	ancestors.

Fonts

Fonts	for	our	HTML	document	can	be	set	for	the	 body 	or	within	an	element's	specific	ruleset.	The	first	thing	we	need
to	do	is	specify	our	font-family,

body	{
		font-family:	"Times	New	Roman",	Georgia,	Serif;
}

The	value	for	the	font-family	property	specifies	preferred	and	fall-back	fonts	for	our	document.	If	Times	New	Roman	is
not	available,	then	the	browser	will	try	Georgia	and	Serif.	We	add	quotation	marks	to	"Times	New	Roman"	because
the	font	name	includes	spaces.

However,	 "" 	is	now	added	due	to	the	CSS	validator	requesting	this	standard.	It's	believed	to	be	a	legacy	error	with
the	validator	itself,	and	not	an	actual	requirement	of	the	CSS	standard.

relative	and	 em

We've	already	seen	how	we	can	change	the	colour	of	our	text,	but	it's	also	useful	to	be	able	to	modify	the	size	of	our
fonts	as	well.	For	example,

body	{
		font-size:	100%;
}
h3	{
		font-size:	x-large;
}
p	{
		font-size:	larger;
}
p.p1	{
		font-size:	1.1em;
}

With	the	above,	we	begin	by	setting	the	base	font	size	to	100%	of	the	font	size	for	a	user's	web	browser.	This	allows
us	to	scale	our	other	fonts	relative	to	this	base	size.	So,	we	could	use	CSS	absolute	size	values,	such	as	 x-large ,
which	scales	the	size	accordingly.	Or,	we	could	try	relative	sizes,	such	as	 larger ,	to	help	make	our	font	sizes	larger
relative	to	the	current	context.

However,	if	we	need	better	control	of	our	font	sizes,	we	can	use	 em .	These	are	meta-units,	which	represent	a
multiplier	on	the	current	font-size.	They're	derived	from	standard	typography	practices,	which	are	based	upon	the
standard	width	of	an	uppercase	M	in	printing.

So,	if	the	current	font	size	has	been	set	to	 12px ,	a	font-size	of	 1.5em 	will	make	the	font	actually	an	equivalent	
18px .	However,	this	current	font	size	will	be	relative	to	the	element	itself.	So,	cascading	and	inheritance	will	be	an
important	factor	in	how	a	font-size	is	calculated.	It	might	be	as	simple	as	referencing	the	root	font	size	for	the	body,	or
an	inheritance	from	a	parent	element.	You'll	need	to	check	in	the	CSS	and	the	rendering.

The	obvious	benefit	of	this	approach,	 em ,	is	that	our	text	will	scale	according	to	the	base	font	size.	If	we	modify	the
size	of	the	base,	all	font	sizes	set	to	 em 	will	also	adjust	accordingly.

Try	different	examples	at

W3	Schools

Further	examples	as	follows,

JSFiddle	-	CSS	Fonts

relative	and	 rem

Another	option	is	the	 rem 	unit	for	font	sizes.

This	is	simpler	in	concept,	but	can	often	provide	an	easier	way	to	manage	font	sizes.	It's	particularly	useful	for
websites	and	applications	that	are	designed	to	be	responsive	or	progressive	in	design	and	usage.	e.g.

body	{
		font-size:	100%;
}
p	{
		font-size:	1.5rem;
}

http://www.w3schools.com/cssref/pr_font_font-size.asp
https://jsfiddle.net/ancientlives/em4ot8zt/

However,	there	are	issues	with	using	both	 em 	and	 rem 	specified	font-sizes.

custom	web	fonts

Using	Fonts	with	CSS	has	often	been	a	limiting	experience,	problematic	at	best,	and	reliant	upon	the	installed	fonts	on
a	given	user's	local	machine.	There	were	workarounds,	such	as	wrapping	font	files	in	JavaScript,	and	then	serving
from	a	remote	server	with	the	applicable	HTML	documents,	but	these	were	notoriously	slow	and	buggy.	They	only
tended	to	be	employed,	at	best,	as	a	final	solution	to	a	difficult	problem.

However,	with	the	advent	of	web	fonts,	the	process	of	rendering	with	custom	fonts	is	now	considerably	easier	for
designers	and	developers.	We	can	deliver	required	fonts	via	the	internet,	using	services	such	as	Google's	custom
fonts.

Google	Fonts

From	this	site,	we	can	pick	and	choose	our	custom	fonts	by	selecting	the	Quick-use	button.	This	loads	a	new	page
with	options	and	instructions	for	using	your	chosen	custom	font.	We	then	select	our	required	character	sets,	add	a	
<link> 	reference	for	the	font	to	our	HTML	document,	and	then	specify	the	fonts	in	our	CSS.	We	need	to	add	this
new	font	as	a	font-family	in	our	style	sheet,

font-family:	'Roboto';

We	can	then	style	our	document's	fonts	as	normal.

An	example	may	be	found	at	the	following	URL,

JSFiddle	-	CSS	Custom	Fonts

References

CSS	Tricks	-	nth	child	recipes
JSFiddle	-	CSS	Basics
MDN	-	CSS
Perishable	Press	-	Barebones	Web	Templates
W3	CSS
W3	Schools	-	CSS
W3	Schools	-	HTML	Colour	Picker
W3	Web	Style	Sheets	-	Even	&	Odd

https://www.google.com/fonts
https://jsfiddle.net/ancientlives/o621f2fj/
https://css-tricks.com/useful-nth-child-recipies/
http://jsfiddle.net/user/ancientlives/fiddles/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://perishablepress.com/bare-bones-htmlxhtml-document-templates/
http://www.w3.org/Style/CSS/
http://www.w3schools.com/css/default.asp
http://www.w3schools.com/colors/colors_picker.asp
http://www.w3.org/Style/Examples/007/evenodd.en.html

