
Comp	424	-	Client-side	Web	Design
Dr	Nick	Hayward

Information	Architecture
A	brief	consideration	of	useful	hints	and	tips	for	an	application's	information	architecture.

Contents

Intro
Data	model,	naming	scheme,	naming	places...
Navigation	and	places
Navigation	map
User	location
Considerations
Issues
Data	and	persistency

Intro

Information	architecture	is	concerned	with	the	organisation	of	information	into	a	perceived	coherent	structure.	This
structure	is	considered	comprehensive,	navigable,	and	in	many	situations	searchable.	For	example,	concepts,	entities,
relationships,	functionality,	events,	content,	and	so	on.

When	designing	such	information	architecture,	we	often	need	to	consider	and	implement	the	following,

a	data	model
a	naming	scheme	or	glossary
names	and	titles	for	identification	of	places
navigation	and	location	awareness
navigation	map	and	associated	mechanisms
breadcrumbs	and	navigation	notifications
presentation	of	such	places
searching

Data	model,	naming	scheme,	naming	places...

Development	of	a	data	model	for	an	application	includes	the	identification	and	recording	of	the	entities,	attributes,	and
operations	for	each	entity.	It	also	includes	identification	of	the	relationships	between	the	entities.

It	is	often	argued	that	the	data	model	is,	in	fact,	part	of	the	app's	interaction	concept.	This	is	because	it	is	perceived	to
help	define	the	nature	of	the	product,	and	because	its	entities,	attributes,	and	operations	will	have	an	impact	on	the
visual	design	itself,	and	its	associated	behaviour.

A	coherent	and	consistent	naming	scheme	is	important	as	it	helps	users	form	a	correct	mental	model	of	the
functionality	of	an	application.	Definition	of	official	names	for	key	elements	and	processes	in	an	application	can	also	be
formalised	and	recorded	in	the	defined	interaction	concept.	For	some	applications,	in	particular	those	with	complex,
specialised	domains,	a	glossary	of	names	and	labels	is	a	particularly	useful	concept.	It	helps	define	the	official,
preferred	terminology	for	the	entire	application.	With	this	in	place,	the	interaction	concept	may	simply	link	or	reference
this	glossary.

Naming	of	places	is	equally	useful	and	important.	Each	place	within	our	application	should	be	clearly	named	and
labelled,	obviously	to	help	our	uses	determine	what	they	are	looking	at	and	where	they	are	in	the	application.



Naturally,	this	also	helps	our	users	easily	differentiate	places	and	concepts	within	the	application.

Such	naming	of	places	also	allows	us	to	easily	define	them	within	menus,	instructions,	help	text,	search	options,	and
so	on.	Also,	don't	forget	that	whilst	official,	pre-defined	names	may	pre-dominate	within	your	application,	it	is	also	OK
for	a	place	to	adopt	a	user-defined	name.	This	is	normally	the	case	for	an	editing	application	or	user	centric
information.

Navigation	and	places

For	application	design,	we	often	reference	navigation	relative	to	defined	places.	For	example,	in	a	web	application
places	may	be	defined	as	pages	or	screens.	Not	all	of	these	places	need	necessarily	be	user	accessible,	but	they	are
still	defined	as	places.	Places	may	also	refer	to	sub-divisions	such	as	panels,	tabs,	and	sub-sections	of	a	given	screen
as	well.	These	sub-sections	may	include	dialogs,	image	presentations,	and	so	on.

For	a	design	with	many	such	examples	of	places,	a	design	should	help	users	determine	and	differentiate,

where	they	are	currently	located	within	the	app
where	they	can	go	next
how	to	easily	get	where	they	want	to	go

As	defined,	one	aspect	of	this	navigation	is	the	concept	of	identification	of	places	with	names	and	titles.	However,	we
must	also	consider	the	actual	presentation	of	places	within	the	application.	For	example,

how	do	we	present	different	places	to	our	users?	For	example,	are	they	all	defined	equally	or	do	we	use
highlighting	and	focusing	to	draw	our	users'	attention.
will	a	user	be	able	to	view	multiple	places	at	once,	or	must	they	page	or	navigate	their	way	through	single	places?
For	example,	consider	the	difference	between	a	desktop	website	and	a	responsive,	mobile	rendering.	We	can
also	see	this	type	of	basic	consideration	for	navigation	controllers	in	iOS	design.
can	these	places	be	resized,	moved	and	rearranged,	opened,	closed,	hidden,	removed	entirely,	and	so	on.
can	we	relate	content	from	one	place	to	another.	If	yes,	how	do	we	present	and	relay	this	related,	contextual
information	to	our	users	within	each	respective	place.	If	the	data	can	be	edited	in	one	place,	does	it	affect	and
modify	the	data	in	the	related	place?	These	considerations	will	also	affect	and	impinge	upon	your	interaction
concepts,	and	the	underlying	information	architecture.

Navigation	map

Navigation	maps,	from	a	design	and	development	perspective,	allow	us	to	consider	and	define	the	places	that	may
exist	within	our	application,	and	the	movements	allowed	from	one	to	the	other.	These	navigation	maps	are	often	most
beneficial	if	represented	in	a	graphical	manner	within	quick	reference	diagrams.

Navigation	maps	are	not	always	relevant	for	all	applications,	and	there	will	be	occasions	where	designing	a	complete
navigation	map	at	the	design	stage	is	both	impractical	and	counter-productive.	An	initial	map	can	always	be	expanded
and	modified	as	we	develop	the	application.

There	will	also	be	instances	where	a	navigation	map	is	simply	impractical.	For	example,	if	we	consider	certain
dynamic	applications,	such	as	catalogues	and	wikis,	we	can	start	to	see	how	many	different	links,	pathways,	and
related	material	a	user	may	generate.

Navigation	mechanisms

There	are	many	different	ways	for	a	user	to	switch	places	and	content.	However,	there	are	some	standard	defined
examples	such	as

menus
links
buttons
hierarchical	structures	-	eg:	trees	may	be	used	to	represent	the	hierarchical	depth	of	the	displayed	data,



document	etc.	So,	it	might	be	beneficial	to	display	the	hierarchical	outline	of	the	data	in	one	pane	relative	to	the
current	document	or	data
maps	-	an	application	may	present	data	points	etc	relative	to	geographical	locations,	or	simply	design	a
conceptual	map	of	the	application	or	domain	itself	for	reference
flow	diagrams	-	allow	a	user	to	visualise	steps	and	outcomes	relative	to	the	current	complex	process	or	workflow.
For	example,	we	might	visually	represent	the	flow	for	a	calculation	or	time-sensitive	process.
switching	-	allows	a	user	to	easily	move	between	multiple	places	that	are	currently	available	within	the	UI
events	-	an	event	triggered	by	a	user	action	or	application	process	should	also	show	a	notification	or	message
window.	Some	sort	of	temporary	pop-up	might	be	shown	to	quickly	alert	the	user...
searching	-	the	simple	act	of	searching	by	keyword,	for	example,	or	selecting	from	a	faceted	list	of	terms	is
another	form	of	user	navigation
history	-	some	applications	present	chronological	lists	of	recently	viewed	or	requested	information	and	places.
Web	browsers,	of	course,	are	a	good	example	of	this	type	of	navigation	option.
bookmarks	/	favourites	-	content	driven	and	focused	applications	will	often	allow	users	to	bookmark	content	and
places	to	allow	for	quick,	easy	recall.

User	location

As	the	scale	and	complexity	of	an	app	increases,	it	becomes	inherently	more	important	to	clearly	identify	a	user's
current	location.	It	acts	as	a	quick	reminder	to	the	user,	and	also	creates	a	familiar	contextual	placeholder	within	the
application.

We	can	indicate	the	user's	current	location	in	a	number	of	different	ways.	For	example,

clearly	display	the	title	or	name	of	the	current	place	with	any	associated	contextual	name.	This	might	include	the
place	name	and	the	document	name	or	title,	for	example.
highlight	the	current	place	name	or	title	on	a	visual	map	or	flow	diagram.	This	could	also	include	a	representation
of	location	on	a	visual	flow	diagram	for	a	process	or	series	of	tasks.
we	can	also	locate	a	current	place	within	a	defined	hierarchical	structure,	such	as	a	tree	representation	of	the
current	document	or	data...

For	many	applications	with	hierarchical	data	representations,	we	can	also	add	the	common	breadcrumb	trail	and
indicator	to	the	current	place.	A	breadcrumb	has	the	benefit	of	acting	as	both	an	indication	of	the	user's	current
location	and	as	a	simple	form	of	navigation.

Considerations

For	our	applications,	we	can	identify	core	sets	of	features,	tasks,	actions,	operations,	and	processes.	We	can	also
consider	series	of	use	cases	that	follow	and	share	similar	patterns	of	interaction.

For	example,	an	editing	application	may	allow	user	interaction	with	many	disparate	tools	and	actions	via	a	common
menu	structure.	A	user	selects	a	given	tool,	which	then	allows	data	entry	or	manipulation.	The	variance	is	the	selected
tool	itself,	but	the	interaction	will	be	able	to	follow	a	similar	pattern.	We	can	also	see	this	with	games,	where	many
different	levels,	challenges,	and	opponents	can	be	targeted	by	our	user	using	similar	interaction	concepts	from	level	to
level.

For	such	applications,	and	interaction	scenarios,	it	makes	sense	to	create	an	initial	list	or	breakdown	of	these	similar
tasks	or	features.	We	can	then	start	to	design	an	interaction	framework	to	describe	perceived	commonalities	in	the
presentation	and	behaviour	of	the	user	interface.

The	creation	of	this	list	and	overview	allows	us,	as	designers	and	developers,	to	understand	how	our	application	will
fundamentally	behave.	It	also	helps	ensure	consistency	across	such	similar	tasks,	thereby	allowing	our	users	to
develop	correct	mental	models.

The	other	benefit	is	that	by	simply	documenting	the	commonalities	between	such	tasks,	it	will	save	us	from	re-
documenting	the	same	aspects	for	individual	tasks	as	we	compile	and	write	our	overall	specifications.



This	framework	will	also	be	useful	for	the	development	of	the	overall	design,	and	the	technical	underpinnings	of	the
application	itself.

Issues

So,	some	of	the	issues	you	might	need	to	consider	for	your	interaction	framework	are	as	follows,

how	the	tasks	are	started	or	triggered,	such	as	a	user	selecting	an	item	on	a	menu
any	required	authorisations	(ie:	which	tasks	can	be	started	and	completed	by	which	group	of	users...)
when	and	how	tasks	can	be	activated,	and	any	given	cases	where	tasks	may	be	disabled
how	and	when	the	task	is	considered	complete
does	the	start	or	end	of	a	task	signal	a	change	in	any	status,	mode	etc...
what	are	the	effects	of	the	task	on	the	system's	data

eg:	is	the	data	saved	automatically,	does	it	persist	or	is	it	temporary,	what	happens	if	the	task	is	abandoned
or	an	error	breaks	the	task,	and	so	on...

Considering	and	designing	the	framework	for	interactions	allows	us	to	ensure	that	we	understand,	as	developers	and
designers,	how	the	application	will	fundamentally	behave.	It	helps	us	try	to	ensure	consistency	across	tasks,	so	that
our	users	can	perceive	patterns	and,	thereby,	once	more	form	correct	mental	models.

Data	and	persistency

A	consideration	of	persistence	and	transactions	in	an	application	may	also	be	considered	relative	to	the	interface
design.	We	would	normally	consider	what,	if	any,	of	the	application's	data	needs	to	be	stored	in	a	persistent	nature.

Relative	to	the	interface	and	interaction	concepts,	we	need	to	consider	how	the	actual	saving	of	data	works	in	the
application.	For	example,	is	the	data	generated	by	user	interactions	saved	in	a	persistent	store,	or	is	it	saved	in	a
temporary	cache	for	quicker	read,	write	access.

We	also	need	to	consider	how	such	data	saving	and	persistency	is	relayed	to	the	user.	Are	they	fully	aware	that	the
data	is	being	saved?	Is	it	an	explicit	act	in	the	interface	design?	eg:	the	user	has	to	actually	press	a	save	button	or
menu	item.	Or,	is	it	part	of	an	auto-save	option	running	as	a	background	process.

As	we	consider	a	plan	and	outline	for	data	storage	and	persistency,	we	often	consider	many	disparate	concepts.	We
will,	naturally,	consider	standard	data	design	patterns	that	include	required	validations	of	the	data,	and	any
accompanying	error	messages.	Relative	to	the	interaction	and	interface	designs,	we	would	need	to	carefully	plan	how
our	error	messages	are	presented	and,	of	course,	whether	the	validation	occurs	on	the	client	or	server	side.	Your
chosen	application	environment,	whether	it	be	mobile,	web,	desktop	etc,	will	influence	this	choice	greatly.

We	would	also	need	to	consider	whether	partial	data	can	be	saved	for	incomplete	interface	tasks,	such	as	a	user
completing	only	part	of	a	form.	In	such	an	example,	it	might	be	useful	to	temporarily	save	the	partial	form	data	to	allow
a	user	to	quickly	and	easily	return	to	complete	the	form	or	document.	It	might	also	allow	you	to	offer	quick	suggestions
for	previous	edits	for	such	material	in	future	tasks.

Relative	to	the	interface	design,	your	chosen	save	points	in	the	flow	of	a	task	will	also	impact	notification	points	and
any	client-side	to	backend	calls.	For	example,	if	you	do	not	clearly	define	points	in	a	process	where	data	may	be
saved	or	cached,	you	may	not	correctly	inform	the	user	of	save	events,	suggestions,	any	time	limits,	percentage	left	to
complete,	and	so	on.	Such	save	points	also	allow	us	to	easily	keep	track	of	whether	data	is	currently	saved	or
unsaved,	assuming	you	have	not	implemented	an	auto-save	feature.

There	is	a	lot	more	to	consider,	but	this	is	really	better	suited	for	a	systems	architecture,	databases	etc	course.

References

Norman,	D.	The	Design	of	Everyday	Things.	Basic	Books.	2013.


