
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

HTML5	-	Intro
A	brief	overview	of	HTML5.

Contents

Intro
Doctype
Basic	template
Elements

add	some	extra	structure
add	some	comments

Semantic	elements
a	basic	example
avoiding	confusion	with	semantic	elements
<header> 	and	 <nav> 	elements
<main> 	element
<section> ,	 <article> ,	 <aside> 	elements
<figure> ,	 <figcaption> 	elements
<footer> 	element

Example	page	structure
example	1
example	2

References

Intro

HTML5	was	finally	standardised	in	October	2014,	after	many	years	of	effective	usage,	modifications,	and	suggestions.

HTML5	introduces	some	interesting	new	features,	which	allow	web	designers	to	create	powerful,	semantically
structured	web	sites.

For	example,

a	new	canvas	element	has	been	added	for	drawing
video	and	audio	support	is	now	available	as	an	embedded	feature	of	a	web	page.	Before,	it	required	a	plugin	such
as	Flash	to	enable	playback	features.
improved	support	for	local	offline	storage
new	content	specific	elements	such	as

article,	footer,	header,	nav,	section

new	form	controls	such	as
calendar,	date,	time,	email,	url,	search

There	are	also	new	input	type	attribute	values.	These	have	been	designed	to	provide	better	input	control	before	the
form	is	sent	to	the	server	side.

We	can	check	browser	compatibility	using	the	following	tool,

HTML5	Test

Doctype

The	 DOCTYPE 	is	a	special	instruction	to	the	web	browser	concerning	the	required	processing	mode	for	rendering	the
document's	HTML.

The	 doctype 	is	a	required	part	of	the	HTML	document,	and	is	the	first	part	of	our	HTML	document.	As	such,	it	should
always	be	included	at	the	top	of	a	HTML	document.	For	example,

<!DOCTYPE	html>

or

<!doctype	html>

This	is	the	doctype	we	add	for	HTML5	rendering.	Therefore,	this	is	not	a	HTML	element,	it	simply	tells	the	browser	the
required	version	of	HTML	for	rendering	the	current	page.

Basic	template

Every	HTML5	page	we	may	design	needs	to	begin	with	the	following	basic	template.	It	will	include	an	initial,	basic
DOCTYPE

<!DOCTYPE	html>
<html>
		<head>
				<meta	charset="UTF-8">
				<title></title>
		</head>
		<body>

		</body>
</html>

which	is	a	notable	contrast	with	the	older	DOCTYPE	of	HTML4	and	XHTML,	and	thankfully	a	lot	simpler	as	well.	We
may	initially	set	a	broad	charset	for	our	document	as	well	using	Unicode's	 utf-8 	value.

We	may	use	this	simple	template	as	our	initial	shell	for	beginning	a	project's	code	with	HTML5.

n.b.	UTF-8	is	a	character	encoding	capable	of	encoding	all	possible	characters,	or	code	points,	defined	by	Unicode
and	originally	designed	by	Ken	Thompson	and	Rob	Pike.	The	encoding	is	variable-length	and	uses	8-bit	code	units.

Elements

Often	known	simply	as	tags,	elements	allow	us	to	add	a	form	of	metadata	to	our	HTML	page.	For	example,

<!--	a	paragraph	element	-->
<p>add	some	paragraph	content...</p>
<!--	a	first	heading	element	-->
<h1>our	first	heading</h1>

This	metadata	is	used	to	allow	us	to	apply	structure	to	a	page's	content.

http://html5test.com/

add	some	extra	structure

For	example,	we	may	wish	to	add	some	extra	structure	to	our	new	template.

<!DOCTYPE	html>
<html>
		<head>
				<meta	charset="UTF-8">
				<!--	title	for	the	webpage	appears	in	the	window,	tab	heading...	-->
				<title>Demo	1</title>
		</head>
		<body>
				<h1>Our	first	web	page</h1>
				<p>
						As	we	build	our	web	apps,	more	elements	and	content	will	be	added...
				</p>
		</body>
</html>

It's	still	very	basic,	but	we	now	have	a	web	page	that	will	load	and	render	a	heading	followed	by	some	text	content	in	a
paragraph.	You	can	also	see	that	we've	added	a	title	for	our	new	page.

add	some	comments

There's	also	a	simple	comment,	to	help	us	understand	the	page.	Comments	in	HTML5	may	still	be	written	as	follows,

<!--	a	comment	in	html	-->

The	comment	will	not	be	visible	to	the	user	in	the	browser,	it	appears	in	the	underlying	source	code	for	reference
purposes,	documentation,	and	so	on.

Semantic	elements

HTML5	also	adds	some	new	semantic	elements.	They	include	the	following	elements,

<article>
<aside>
<details>
<figure>
<figcaption>
<footer>
<header>
<main>
<nav>
<section>

These	new	elements	allow	us	to	better	structure	our	underlying	documents,	adding	clear	semantic	divisions	as	well.
It's	doubtful	you'll	use	all	of	these	elements	in	every	page	you	build,	but	some	will	become	firm	favourites	over	time.

a	basic	example

For	a	bit	of	fun,	and	to	ensure	we	test	most	of	the	above	new	elements,	we	might	render	the	following	example

<!DOCTYPE	html>
<html>
		<head>
				<meta	charset="UTF-8">
				<!--	our	second	demo	with	lots	of	new	elements	-->
				<title>Demo	2</title>
		</head>
		<body>
				<header>
						<h1>Our	first	web	page</h1>
				</header>
				<!--	navigation	elements,	links...	-->
				<nav>Option	1</nav>
				<!--	main	content	-->
				<main>
						<section>
								<p>
										As	we	build	our	web	apps,	more	elements	and	content	will	be	added...
								</p>
								<figure>
										<img	src="media/images/philae-demo2.jpg"	alt="temple	of	philae"	
width="333px"	height="200px">
								</figure>
						</section>
						<aside>
								Temple	at	Philae	in	Egypt	is	Ptolemaic	era	of	Egyptian	history...
						</aside>
				</main>
				<footer>		
						foot	of	the	page...
				</footer>
		</body>
</html>

Most	of	the	above	tags	should	be	self-explanatory.	However,	 aside 	normally	requires	some	extra	definition.	The	
aside 	element	tag	is	used	to	define	some	content	aside	from	the	content	which	contains	this	element.	It	is	normally
used	to	help	define	or	relate	material	to	this	surrounding	content.	It	acts,	effectively,	as	supporting	or	additional
contextual	material	for	this	surrounding	content.	It	may	be	used,	for	example,	to	add	additional	material	and	content	to
a	sidebar.

avoiding	confusion	with	semantic	elements

You	should	notice	from	this	demo	that	we	have	not	used	the	element	tag	 article .	This,	plus	the	tag	 section ,	can
still	cause	some	confusion	amongst	web	developers.

They	are	not	as	widely	used	as	you	might	expect,	often	because	it	is	simply	easier,	and	more	practical,	to	use	the
traditional	 div 	element,	even	though	it	is	often	described	as	the	sectioning	element	of	last	resort.	A	sort	of	catch-all
option	for	elements	and	sectioning.

The	best	analogy	is	with	a	standard	newspaper.	Each	newspaper	will	contain	numerous	different	sections,	such	as
headlines,	politics,	health,	sports	etc,	and	within	each	section	we	will	also	find	articles.	However,	according	to	the
HTML5	specification,	an	article	element	also

represents	a	self-contained	composition	in	a	document,	page,	application,	or	site	and	that
is,	in	principle,	independently	distributable	or	reusable,	e.g.	in	syndication.

One	of	the	issues,	and	often	noted	concerns,	with	using	semantic	elements	is	how	and	when	to	add	them	to	our
document.	In	effect,	where	and	when	do	we	add	them	to	our	page?

Using	the	more	traditional	non-semantic	elements	was	considered	simpler	due	to	their	generalised	application	within	a
page's	structure.

So,	let's	go	through	some	of	these	new	elements	and	where	to	add	them	to	our	web	page.

<header> 	and	 <nav> 	elements

The	 <header> 	element	is	used	to	collect	and	contain	introductory	content,	which	is	semantically	appropriate	for	the
head	or	top	of	a	page.

It	is	technically	feasible	and	acceptable	to	include	multiple	 <header> 	elements	within	a	page	or	document.	For
example,	we	might	include	a	header	for	the	main	content,	the	sidebar	content,	an	article,	and	a	section.	However,	it
shouldn't	be	used	as	a	sectioning	element	in	its	own	right	throughout	a	document.

The	 <nav> 	element	is	short	for	navigation	and,	as	you	might	expect,	stores	and	defines	a	set	of	links	for	internal	or
external	navigation.	As	with	the	header,	this	tag	is	not	meant	to	define	all	navigation	links,	but	instead	can	often	be
considered	suitable	for	primary	site	links.

It	is	common	practice,	for	example,	to	add	additional	links	to	a	sidebar,	footer	or	the	main	content	of	a	page.	However,
there	is	no	need	to	consider	these	within	a	 <nav> 	element	structure.	They	are,	effectively,	additional,	often	internal,
links	for	a	site.	Links	in	the	site's	footer	are	a	good	example.

<main> 	element

Simply	put,	this	element	tag	defines	our	main	or	primary	content,	traditionally	the	central	content	area	of	our	page	or
document.	For	those	who	have	developed	or	used	earlier	HTML	standards,	such	as	HTML4,	often	we	simply	used	a	
<div> 	element	with	a	 class 	or	 id 	to	define	this	section	of	the	page	as	the	central	content.	For	example,

<!--	e.g.	HTML4	main	content	-->
<div	id="main">
		...
</div>

However,	with	the	advent	of	HTML5	we	can	semantically	mark	our	pages	to	define	our	main	content.

As	a	note,	this	element	tag	should	not	include	any	page	features,	such	as	navigation	links,	headers	etc,	that	are
repeated	across	multiple	pages.

Also,	we	cannot	add	multiple	 <main> 	elements	to	a	single	page.	And,	it	must	not	be	structured	as	a	child	element	to

<article>,	<aside>,	<footer>,	<header>	or	<nav>

<section> ,	 <article> ,	 <aside> 	elements

As	you	might	imagine	from	the	tag	name,	this	element	defines	a	section	of	a	page	or	document.

Therefore,	the	W3C	defines	this	tag	as	follows,

a	section	is	a	thematic	grouping	of	content.	The	theme	of	each	section	should	be
identified,	typically	by	including	a	heading	as	a	child	of	the	section	element.

Source	-	W3C	Documentation

A	site	can,	therefore,	be	sub-divided	into	multiple	sections	as	we	might	traditionally	consider	a	book,	for	example.

The	 <article> 	element,	again	as	with	traditional	print,	may	be	considered	suitable	for	organising	and	containing
independent	content.	We	may	include	multiple	articles,	as	long	as	the	disparate	organisation	of	material	is	logical	and
required.

So,	we	might	consider	using	the	 <article> 	element	for	a	post	of	some	kind,	such	as	a	forum	or	blog	post,	a	story,	a
newspaper	report	or	article,	a	review	of	content	or	a	product,	and	so	on.	The	key	to	using	this	tag	is	to	consider
whether	the	material	can	be	used	in	isolation.	i.e.	can	we	separate	the	content	for	syndication.

As	mentioned	above,	the	 aside 	element	tag	is	used	to	define	some	content	aside	from	the	content	which	contains
this	element.	It	is	normally	used	to	help	define	or	relate	material	to	this	surrounding	content.	It	acts,	effectively,	as
supporting	or	additional	contextual	material	for	this	surrounding	content.

To	help	us	better	understand	how	to	use	and	consider	these	elements,	MDN	(Mozilla	Developer	Network)
Documentation	has	a	great	summary	as	follows,

if	it	makes	sense	to	separately	syndicate	the	content	of	a	 <section> 	element,	use	an	 <article> 	element
instead
do	not	use	the	 <section> 	element	as	a	generic	container;	this	is	what	 <div> 	is	for,	especially	when	the
sectioning	is	only	for	styling	purposes.	A	rule	of	thumb	is	that	a	section	should	logically	appear	in	the	outline	of	a
document.
MDN	Documentation	suggests,

if	it	makes	sense	to	separately	syndicate	the	content	of	a	 <section> 	element,	use	an	
<article> 	element	instead

and

do	not	use	the	 <section> 	element	as	a	generic	container;	this	is	what	 <div> 	is	for,
especially	when	the	sectioning	is	only	for	styling	purposes.	A	rule	of	thumb	is	that	a
section	should	logically	appear	in	the	outline	of	a	document.

http://www.w3.org/TR/html5/sections.html#the-section-element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/section

<figure> ,	 <figcaption> 	elements

Again,	as	with	print	media,	we	may	organise	our	image	content	along	traditional	lines	with	a	semantically	logical
grouping	of	image	and	caption.	This	grouping	is	the	 <figure> 	element,	which	acts	as	a	parent	group	for	image	and
caption.	For	example,

<figure>
		<img	src="media/images/philae-demo2.jpg"	alt="temple	of	philae"
		width="333px"	height="200px">
		<figcaption>Ptolemaic	temple	at	Philae,	Egypt</figcaption>
</figure>

So,	our	previous	example	can	now	be	updated	with	the	simple	addition	of	a	useful	figure	caption.

<footer> 	element

As	the	element	tag	might	suggest,	this	defines	a	footer	for	a	document	or	section.	A	 <footer> 	element	usually
contains	information	about	its	containing	element.	So,	let's	consider	a	couple	of	examples.

1.	 in	a	footer	for	an	article,	we	might	use	this	element	to	define	and	record	the	author	of	the	article,	publication	date,
any	suitable	tags	or	metadata,	associated	documents,	and	so	on.

2.	 in	its	primary	use,	a	footer	will	simply	be	placed	at	the	foot	of	a	page,	where	we	may	record	copyright	information,
contextual	links,	contact	information,	small	logos,	and	so	on.	This	has	traditionally	been	the	semantic	usage	of	a
footer	within	a	page.	We	would	normally	use	a	 <div> 	with	a	 class 	or	 id 	value	set	to	 "footer" 	for	HTML4
and	earlier.

Example	page	structure

With	our	brief	knowledge	of	HTML5	semantic	elements,	we	may	now	consider	how	they	fit	together	within	our	page
puzzle.

For	example,	the	following	image	shows	a	basic	page	structure

Image	-	Example	1

We	can	also	add	further	semantic	division	with	the	logical	addition	of	the	 <main> 	HTML5	element.	For	example,

Image	-	Example	2

You	should	notice	that	we	have	not	included	the	 <html> 	and	 <body> 	tags	to	these	diagrams.	They	are	required	for
all	HTML	documents,	so	we	can	safely	avoid	replicating	their	usage	in	multiple	diagrams.

We	have	now	divided	the	page	into	four	logical,	semantic	divisions

header
nav
main
footer

We	could	also	add	a	sidebar	to	help	us	divide	the	page's	content.	There	are	many	different	options	available	for	page
organisation,	but	the	basic	template	will	often	be	as	we've	just	seen.

References

HTML5	Test
MDN

HTML	developer	guide
Block-level	elements
Content	categories
Inline	elements

W3C
HTML5	Documentation

W3	Schools
W3Schools	-	HTML5	Semantic	Elements

http://html5test.com/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements
http://www.w3.org/TR/html5/Overview.html#contents
http://www.w3schools.com/html/html5_semantic_elements.asp

