
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

JS	-	Intro	&	Basics
A	brief	introduction	to	JavaScript.

Contents

Intro
Basics

operators
some	common	operators
values	and	types
type	conversion
comments

Variables
identifiers

References

Intro

JavaScript	is	now	a	core,	invaluable	technology	for	client-side	design	and	development.	From	plain	JavaScript	to	the
latest	library,	its	growth	as	a	development	environment	has	exploded	over	the	last	few	years.	It	is	now	being	used	as	a
powerful	technology	to	help	us	rapidly	prototype	and	develop	web,	mobile,	and	desktop	applications.	We	can	also	use
it	with	embedded	systems.

We	can	use	libraries	such	as	jQuery,	React,	AngularJS,	and	Node.js,	to	name	but	a	few,	to	help	us	develop	powerful,
scaleable	client	and	server	applications.	Using	frameworks	such	as	Apache	Cordova,	we	can	develop	cross-platform
applications	for	mobile	devices.	Finally,	with	GitHub's	recent	Electron	project,	for	example,	we	can	now	leverage	web
technologies	to	build	powerful	desktop	applications.	And,	using	libraries	such	as	Espruino	and	Tessel,	we	can	develop
applications,	controllers,	and	environments	for	use	with	embedded	systems.

Basics

We'll	now	work	our	way	through	some	of	the	fundamental	concepts	for	JavaScript	development

operators

Operators	are	a	particularly	useful,	and	fundamental	aspect	of	programming.	It	is	no	different	with	JavaScript.

They	allow	us	to	perform	mathematical	calculations,	assign	one	thing	to	another,	compare	and	contrast,	and	so	on.

With	the	simple	 * 	operator,	we	can	perform	multiplication,

2	*	4

Likewise,	we	can	add,	subtract,	and	divide	numbers	as	required	within	the	logic	of	our	applications.	We	can	mix
mathematical	with	simple	assignment,

a	=	4;
b	=	a	+	2;

https://jquery.com/
http://facebook.github.io/react/
https://angularjs.org/
https://nodejs.org/en/
https://cordova.apache.org/
http://electron.atom.io/

So,	in	this	basic	example,	we	are	simply	assigning	the	value	 4 	to	a	variable	called	 a ,	and	then	calculate	a	value	for
the	variable	 b 	using	 a	+	2 	resulting	in	a	new	total	of	 6 	for	 b .

some	common	operators

The	following	is	a	short	summary	of	the	more	common	operators	currently	used	in	JavaScript.

assignment

=

eg:	 a	=	4

comparison

< ,	 > 	 <= ,	 >=
eg:	 a	<=	b

compound	assignment

+= ,	 -= ,	 *= ,	 /=
compound	operators	are	used	to	combine	a	mathematical	operation	with	assignment
same	as	 result	=	result	+	expression
eg:	 a	+=	4

equality

operator description

== loose	equals

=== strict	equals

!= loose	not	equals

!== strict	not	equals

eg:	 a	!=	b

increment/decrement

increment	or	decrement	an	existing	value	by	1
++ ,	 --
eg:	 a++ 	is	equal	to	 a	=	a	+	1

logical

used	to	express	compound	conditionals	-	and,	or
&& ,	 ||
eg:	 a	||	b

mathematical

+ ,	 - ,	 * ,	 /

eg:	 a	*	4 	or	 a	/	4

object	property	access

properties	in	objects	are	specific	named	locations	for	holding	values	and	data
effectively,	values	within	values

.

eg:	 a.b 	means	object	 a 	with	a	property	of	 b

values	and	types

In	JavaScript,	as	with	most	forms	of	programming,	we	are	able	to	express	different	representations	of	values	often
based	upon	a	need	or	intention	for	that	value.	Such	representations	are	known	as	types	in	common	syntax.

JavaScript	has	built-in	types,	which	allow	us	to	represent	primitive	values.	For	example,	if	we	need	to	perform	a
mathematical	calculation	we	need	and	use	numbers.	For	textual	documents	and	output,	we	use	strings,	and	to
simply	offer	an	option,	yes	or	no,	right	or	wrong,	we	can	use	a	standard	boolean,	which	allows	us	to	represent	a	true
or	a	false	value.

Such	values	included	in	the	source	code	are	simply	known	as	literals,	and	we	can	represent	them	as	follows,

string	literals	use	double	or	single	quotes
eg:	 "some	text" 	or	 'some	more	text'
numbers	and	booleans	are	represented	without	being	escaped,	ie:	they	don't	require	encapsulating	quotes...
eg:	 49 ,	 true;

We	can	also	consider	and	include	arrays,	objects,	functions,	and	so	on	within	our	consideration	of	values	and	types	for
JavaScript.	Each	will	be	considered	in	detail	later	on.

type	conversion

In	JS,	we	have	the	option	and	ability	to	convert,	or	more	correctly	coerce	our	values	and	types	from	one	type	to
another.	For	example,	if	we	have	a	number,	which	then	needs	to	be	printed,	we	can	convert	it,	or	coerce	it,	to	a	string.
And,	logically,	we	can	perform	the	reverse	for	a	string	to	a	number.

JS	provides	different	options	for	enforcing	such	coercion,	including	the	following

var	a	=	"49";
var	b	=	Number(a);

In	JS,	variable	 a 	will	be	a	string,	and	the	resultant	number	coercion	will	create	a	new	variable	 b 	as	a	number.	The
built-in	JS	function,	 Number() ,	is	an	explicit	coercion,	and	allows	us	to	convert	any	type	to	a	number	type.

There	is	also	a	less	specific	implicit	coercion,	which	JS	will	often	perform	as	part	of	a	comparison.	For	example,	if	we
compare

"49"	==	49

JS	will	do	its	best	to	force	the	correct	answer	by	implicitly	coercing	the	left	string	to	a	matching	number,	and	then
performing	the	comparison.

Whilst	this	is	possible	in	JS,	it's	often	considered	bad	practice	and	is	something	you	should	try	to	avoid	where
possible.	It's	better	to	explicitly	convert	the	type,	and	then	perform	the	comparison.

However,	there	are	rules	that	JS	follows	in	trying	to	implement	this	implicit	coercion.	We'll	look	at	these	rules	later	on.

comments

As	with	other	languages,	JS	naturally	includes	the	option	to	add	comments	within	our	code.	There	are	currently	two
permitted	implementations	for	comments,

single	line	comment

//single	line	comment
var	a	=	49;

multi-line	comment

/*	this	comment	has	more	to	say...
we'll	need	a	second	line	*/
var	b	=	"forty	nine";

Variables

Often	referenced	as	a	symbolic	container	for	values,	and	data,	applications	use	such	containers	to	keep	track	and
update	values	during	the	various	stages	of	an	application.	The	easiest	way	to	achieve	this	goal	is	to	use	a	variable	as
a	container	for	such	values	and	data.

Variables	allow	values	to	vary	over	time,	and	JS	is	no	different.	However,	one	of	the	major	differences	lies	in	the	way	it
declares	its	variables	and	assigns	 type .	JS	can	emphasize	types	for	such	values,	and	does	not	enforce	them	on	the
variable	itself.

Known	as	weak	typing,	or	dynamic	typing,	JS	permits	a	variable	to	hold	a	value	of	any	type.	It	can	often	be	a	benefit
of	the	language,	and	a	quick	way	to	maintain	flexibility	in	design	and	development.

In	JS,	we	declare	a	variable	using	the	keyword	 var .	and	this	declaration	does	not	include	any	further	necessary	type
information.

var	a	=	49;
//double	var	a	value
var	a	=	a	*	2;
//coerce	var	a	to	string
var	a	=	String(a);
//output	string	value	to	console
console.log(a);

In	the	above	example,	we	can	see	how	 var	a 	maintains	a	running	total	of	the	value	of	 a .	Therefore,	it	is	able	to
keep	a	record	of	these	changes,	and	effectively	the	state	of	the	value	and	its	small	part	of	the	application.

In	other	words,	state	is	keeping	track	of	changes	to	any	values	in	the	application.

We	can	also	use	variables	in	JS	to	enable	central,	common	references	to	our	values	and	data.	Better	known	in	most
languages	simply	as	constants,	such	variables	allow	us	to	define	and	declare	a	variable	with	a	value	that	is	not
intended	to	change	throughout	the	application.

In	JavaScript,	the	concept	of	a	constant	is	similar.	It	creates	a	read-only	reference	to	a	value.	However,	the	value	itself
is	not	immutable,	it's	simply	the	identifier	that	cannot	be	reassigned.	The	value	may	be	updated,	for	example,	if	it's	set
as	an	object.

Such	perceived	constants	are	often	declared	together,	and	form	a	store	for	values	that	can	be	abstracted	for	use
throughout	an	app.	If	the	value	is	later	updated,	this	change	ripples	through	the	app	to	each	reference	to	the	variable.

As	a	convention,	JS	normally	defines	perceived	constants	using	uppercase	letters,

var	NAME	=	"Philae";

We	can	also	use	multiple	words	in	the	naming	convention	for	constants,	and	each	word	is	separated	using	an
underscore,	 _ .

var	TEMPLE_NAME	=	"Philae";

With	the	advent	of	ECMAScript	6,	or	ES6,	there	is	now	a	new	way	to	declare	a	constant,	which	uses	the	keyword	
const 	instead	of	 var .

const	TEMPLE_NAME	=	"Philae";

There	are	many	different	benefits	to	using	constants,	foremost	amongst	them	are	the	benefits	of	abstraction,	and
ensuring	that	the	value	is	not	accidentally	changed.	For	example,	if	we	tried	to	change	the	value	of	the	above	constant
whilst	the	application	was	running,	it	would	reject	the	change.	In	strict	mode,	this	rejection	would	lead	to	the	application
failing	with	an	error.

Such	JS	constants	are	also	bound	by	scoping	rules,	which	means	that	the	value	may	be	updated	at	block-level,
including	conditional	statements,	loops,	&c.

identifiers

We've	already	seen	how	to	declare	a	variable	in	JS,	but	there	are	also	a	few	rules	and	best	practices	for	naming	valid
identifiers.	Using	typical	ASCII	alphanumeric	characters,	we	can	consider	such	naming	rules	as	follows,

an	identifier	must	begin	with	 a-z,	A-Z,	$,	_
may	contain	any	of	those	characters,	plus	 0-9

Property	names	follow	this	same	basic	pattern,	although	we	need	to	be	careful	not	to	use	certain	keywords,	or
reserved	words.	Reserved	words	can	include	such	examples	as,

break,	byte,	delete,	do,	else,	if,	for,	this,	while 	and	so	on
further	details	are	available	at	the	W3	Schools	site

References

MDN
MDN	-	JS

W3	Schools

http://www.w3schools.com/js/js_reserved.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
http://www.w3schools.com/js/js_reserved.asp

