
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

JS	-	Logic
A	brief	introduction	to	logic	in	JavaScript.

Contents

Intro
Logic

blocks
conditionals
loops
functions
scope
scope	example
variables	and	scope
variables	and	block-level
variables	and	strict	mode

References

Intro

JavaScript	is	now	a	core,	invaluable	technology	for	client-side	design	and	development.	From	plain	JavaScript	to	the
latest	library,	its	growth	as	a	development	environment	has	exploded	over	the	last	few	years.	It	is	now	being	used	as	a
powerful	technology	to	help	us	rapidly	prototype	and	develop	web,	mobile,	and	desktop	applications.	We	can	also	use
it	with	embedded	systems.

Logic

A	few	underlying	concepts	for	working	with	logic	in	JavaScript.

blocks

A	natural	coding	style,	for	JS	and	other	languages,	is	the	simple	act	of	grouping	contiguous	and	related	code
statements	together.	Often	known	as	blocks,	in	JS	a	block	is	defined	by	wrapping	one	or	more	statements	together
within	a	pair	of	curly	braces,	 {} .

Such	blocks	are	commonly	attached	to	other	forms	of	control	statement,	including	conditional	statements,

if	(a	>	b)	{
...do	something	useful...
}

conditionals

Conditionals,	and	by	association	conditional	statements,	inherently	require	a	decision	to	be	made.	A	code	statement,
and	application,	will	often	need	to	consult	state	and	the	answer	will	predominantly	be	a	simple	yes	or	no.

Within	our	JS	applications,	there	are	many	different	ways	we	can	express	conditionals.	The	most	common	example
is	the	 if 	statement.	In	essence,	we	use	this	statement	to	check,	if	this	given	condition	is	true,	do	the	following...

if	(a	>	b)	{
console.log("a	is	greater	than	b...");
}

The	 if 	statement	requires	an	expression	between	the	parentheses	that	can	be	treated	as	either	true	or	false.

We	can	add	an	additional	option	if	this	expression	returns	false,	using	a	common	 else 	clause

if	(a	>	b)	{
console.log("a	is	greater	than	b...");
}	else	{
console.log("no,	b	is	greater...");
}

As	mentioned	above,	types	that	are	not	matching,	in	effect	the	expected	type	for	the	comparison,	will	be	coerced	by
JS	to	the	expected	type.	For	an	 if 	statement,	JS	expects	a	 boolean .

With	this	in	mind,	JS	defines	a	list	of	values	that	it	considers	false.	These	values	will	become	false	when	coerced	to	a	
boolean .	For	example,	such	values	include	 0 	(and	 "").	This	means	that	any	value	not	on	this	list	of	false	values

will	be	considered	true,	and	therefore	coerced	to	true	when	defined	as	a	 boolean .

Conditionals	in	JS	also	exist	in	another	form,	which	includes	the	 switch 	statement.	Further	details	on	conditionals
later	on.

loops

Programming	in	general,	and	JS	in	this	instance,	uses	loops	to	allow	repeating	sets	of	actions	until	a	given	condition
fails.	In	effect,	this	repetition	continues	whilst	the	requested	condition	holds.

Loops	can	take	many	different	forms,	but	in	essence	they	follow	this	basic	behaviour.

A	loop	includes	the	test	condition	as	well	as	a	block,	normally	within	curly	braces.	Each	time	this	block	executes,	an
iteration	of	the	loop	has	occurred.

Good	examples	of	this	behaviour	include	the	 while 	and	 do...while 	loops.	Each	repeat	a	block	of	statements	until
a	condition	ceases	to	evaluate	as	 true .

The	basic	difference	between	these	loops,	 while 	and	 do...while ,	is	whether	the	conditional	tested	is	before	the
first	iteration	(while 	loop),	or	after	the	first	iteration	(do...while)	loop.

If	the	conditional	test	returns	as	 false ,	the	next	iteration	of	both	of	these	loops	will	fail	to	execute.	The	loop	stops.

So,	if	the	condition	is	initially	false,	a	 while 	loop	will	never	run,	but	a	 do...while 	will	run	through	for	the	first	time.

We	can	also	stop	a	JS	loop	using	the	common	 break 	statement.

Another	useful	form	of	loop	is	known	as	the	 for 	loop.	This	loop	has	three	clauses,	including

initialisation	clause
conditional	test	clause
update	clause

If	the	goal	of	the	loop	is	counting,	or	iterating	over	a	large	list	or	array,	it	is	often	more	efficient	to	use	a	 for 	loop.	It
will	often	also	be	the	easier	option.

There	are	other	specialised	forms	of	loop	that	will	be	covered	later	on.

NB:	don't	forget,	programming	languages,	and	CS	in	general,	start	counting	at	 0 .

functions

Functions	are	a	particularly	useful	and	important	part	of	programming	in	general.	Again,	this	is	no	different	with
JavaScript.	In	fact,	a	function	may	often	be	considered	one	of	the	most	important	concepts	in	JavaScript.

In	JS,	functions	are	a	type	of	object,	and	one	that	we	use	repeatedly,	in	different	guises,	throughout	our	applications.

In	theory,	functions,	being	a	type	of	object,	can	also	have	properties.	However,	it	is	more	common	to	use	this	type	of
object	as	a	grouping	of	code.	They	allow	us	to	define	once,	and	then	re-use	as	needed	throughout	our	application.	In
effect,	we	can	break	up	our	code	into	more	manageable,	reusable	pieces,	and	store	them	in	functions	with	the	benefit
of	abstraction.

In	most	instances,	a	function	is	a	named	grouping	of	code.	This	name	can	be	called,	and	the	code	will	be	run	each
time.

JS	functions	can	be	designed	with	optional	arguments,	better	known	as	parameters,	which	allow	us	to	pass	values	to
the	function.	These	functions	can	also	optionally	return	a	value.	e.g.

function	outputTotal(total)	{
		console.log(total);
}
var	a	=	49;
a	=	a	*	3;	//	or	use	a	*=	3;

outputTotal(a);

We	can	obviously	update	this	example	to	better	abstract	the	code	by	adding	an	additional	function,

function	outputTotal(total)	{
		console.log(total);
}

function	calculateTotal(amount,	times)	{
		amount	=	amount	*	times;
		return	amount;
}

var	a	=	49;
a	=	calculateTotal(a,	3);
outputTotal(a);

JSFiddle	Demo

```javascript	function	outputTotal(total)	{	console.log(total);	}
function	calculateTotal(amount,	times)	{
amount	=	amount	*	times;
return	amount;
}

var	a	=	49;
a	=	calculateTotal(a,	3);
outputTotal(a);

		*	[JSFiddle	Demo](http://jsfiddle.net/ancientlives/0432kzb0/)

#####	scope
Scope,	or	*lexical	scope*,	is,	effectively,	a	collection	of	variables	and	
associated	rules	for	how	we	can	access	them	by	name.

So,	in	JS,	**each	function	gets	its	own	scope**.	Variables	within	a	function's	
given	**scope**	can	only	be	accessed	by	code	inside	that	function.	Also,	a	

http://jsfiddle.net/ancientlives/0432kzb0/


variable	name	has	to	be	unique	within	a	function's	scope.	However,	the	same	
variable	name	could	appear	in	different	scopes.

We	can	also	nest	one	scope	within	another.	If	we	nest	scopes,	then	code	within	
the	inner	scope	is	able	to	access	variables	from	either	the	parent	or	local	
scope.

However,	code	only	in	the	outer	scope	is	unable	to	access	any	code	in	the	inner	
scope.	Effectively,	it	simply	does	not	have	access	to	this	inner	function	code.

#####	scope	example
```javascript
function	outerScope()	{
		var	a	=	49;
		//scope	includes	outer	and	inner
		function	innerScope()	{
				var	b	=	59;
				//output	a	and	b
				console.log(a	+	b);	//returns	108
		}
		innerScope();

		//scope	limited	to	outer
		console.log(a);	//returns	49
}

//run	outerScope	function
outerScope();

JSFiddle	Demo

strict	mode

With	the	introduction	of	ES5,	JavaScript	now	includes	the	option	to	add	a	strict	mode	to	ensure	tighter	code	and
better	compliance	with	certain	language	behaviour	and	rules.	Using	this	option	is	often	considered	worthwhile	to
ensure	greater	compatibility,	and	safer	use	of	the	language	and	its	guidelines.	It	can	also	help	optimise	code	for	better
use	with	rendering	engines.

So,	we	can	add	it	at	different	levels	within	our	code.	For	example,	we	could	restrict	this	strict	mode	to	a	function	level,
or	enforce	it	for	a	whole	file.	We	simply	set	the	required	strict	mode	pragma	to	the	required	level,

function	outerScope()	{
		"use	strict";
		//code	is	strict

		function	innerScope()	{
		//code	is	strict

		}
}

If	we	set	the	strict	mode	pragma	for	the	whole	file,	placed	at	the	top	of	our	file,	all	functions	and	code	will	be	checked
against	this	strict	mode.	A	potential	benefit	of	strict	mode	relates	to	the	way	JS	can	auto-create	global	variables	for
variable	declarations	missing	a	 var 	keyword.	We'll	look	at	this	later	on.	However,	an	example	might	be

function	outerScope()	{
		"use	strict";
		a	=	49;	//	`var`	missing	-	ReferenceError
}

http://jsfiddle.net/ancientlives/7wgvkjub/

variables	and	scope

When	we	declare	a	variable	in	JS,	we	can	use	different	keywords	relative	to	intended	scope.	For	example,	the
standard	declarative	keyword	is

var

which	means	that	the	variable	will	belong	to	the	current	scope.	If	we	want	to	create	a	new	variable	with	a	global	scope,
outside	of	any	function,	we	can	use	the

global

keyword.	Such	declarations	will,	of	course,	influence	the	scope	of	usage	for	a	given	variable.	As	we've	already	seen,
we	can	limit	the	scope	of	a	variable	to	local	or	global	usage,	and	consider	a	variable's	value	relative	to	its	availability
within	that	scope.

For	example,	we	can	consider	such	behaviour	an	example	of	hoisting,	which	defines	the	declaration	of	a	variable	as
belonging	to	the	entire	scope,	and	by	association	accessible	throughout	that	scope	as	well.	In	effect,	a	declared
variable	will	be	moved	to	the	top	of	the	scope.	This	concept	also	works	with	functions,	where	they	are	hoisted	to	the
top	of	the	scope.	In	fact,	this	is	often	the	more	common	use	of	hoisting,	and	preferable	to	standard	misuse	with
variables.

variables	and	block-level

We've	also	briefly	discussed	the	concept	of	nesting,	and	scope	specific	variables.	With	the	advent	of	ES6,	we	can
increase	the	level	of	granularity,	and	fine	control,	to	create	variables	that	are	restricted	to	the	block	level.

By	using	the	keyword	let,	we	can	declare	block	level	specific	variables

if	(a	>	5)	{
let	b	=	a	+	4;

console.log(b);

}

let	enables	us	to	specify	the	variable	just	within	the	scope	of	the	 if 	conditional	statement,	which	means	that	 b 	will
not	be	available	to	the	whole	function.	One	of	the	obvious	benefits	is	the	negation	of	the	possibility	of	scope	pollution
within	an	application.	If	a	variable	is	only	required	in	a	given	limited	block,	why	expose	it	to	a	broader	scope	within	the
app.

variables	and	strict	mode

As	a	parting	thought	on	variables,	let's	return	to	the	option	to	add	strict	mode	to	our	code.	As	mentioned	earlier,	one
of	the	inherent	benefits	of	using	strict	mode	is	the	ability	to	avoid	the	unfortunate	JS	habit	of	creating	global	variables,
in	the	sense	of	scope,	for	variable	declarations	without	the	keyword	 var .

		function	myScope()	{
				a	=	49;
		}

If	we	add	strict	mode,	this	will	return	a	reference	error,	and	 a 	will	not	be	defined.	Without	this	strict	mode	option,	we
get	a	variable	that	will	be	hoisted	to	the	top,	and	then	either	set	as	a	globally	available	variable,	although	it	could	be
deleted,	or	it	will	set	a	value	for	a	variable	with	the	matching	name.	It	has	basically	bubbled	up	through	the	available
layers	of	scope	until	it	finds	a	match.

In	effect,	it	becomes	similar	in	essence	to	a	declared	global	variable.	This	can	create	some	strange	behaviour	in	our
applications,	which	can	often	be	tricky	to	debug.	So,	remember	to	declare	your	variables	correctly	and	at	the	top.

For	example,

var	a;

function	myScope()	{
				"use	strict";
		 a	=	49;
}

myScope()
a	=	59;
console.log(a);

References

MDN
MDN	-	JS
MDN	-	JS	Const
MDN	-	JS	Data	Types	and	Data	Structures
MDN	-	JS	Grammar	and	Types

W3	-	JS	Performance

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
http://www.w3schools.com/js/js_performance.asp

