
Extra	Notes	-	Node.js	Todos	API
Dr	Nick	Hayward

Contents

intro
mongoose	setup
initial	app	setup
create	a	model	with	Mongoose
use	a	model	with	Mongoose
use	validators,	types,	and	defaults	with	Mongoose
refactor	code	for	Mongoose	and	models
build	a	basic	API

setup	server
POST	route
GET	route
Mongoose	query	tests
Mongoose	validation	checking
GET	route	with	parameter
DELETE	route	with	parameter
PATCH	route	with	parameter
create	a	separate	database	for	tests
basic	refactor	of	code	structure
CRUD	API	for	todos	app

node-todos-api	-	todos	web	app	-	intro

Combine	Node.js,	Mongoose,	and	MongoDB	with	a	UI	client-side	to	create	a	Todos	app.

app	-	Mongoose	setup

Mongoose	helps	create	schema-based	models	for	an	application's	data.	e.g.	define	a	schema	for	a	user	document	&c.

It	also	helps	with	type	casting,	validation,	structuring	queries	to	MongoDB,	and	so	on.	Further	details,

mongoosejs.com/docs/guide.html

Install	Mongoose,

npm	i	mongoose	--save

app	-	initial	app	setup

Add	a	folder	for	the	 server 	to	the	root	of	the	app,	and	then	add	a	new	file	 server.js .

This	file	will,	effectively,	act	as	the	starter,	a	type	of	bootstrapping,	for	the	app.

So,	we	can	require	Mongoose	and	connect	to	the	DB	in	MongoDB.	e.g.

const	mongoose	=	require('mongoose');

mongoose.connect('mongodb://localhost:27017/NodeTodoApp');

app	-	create	a	model	with	Mongoose

Create	a	Mongoose	model	for	data	we	want	to	store	in	MongoDB.

With	Mongoose,	we	can	specify	a	name	for	the	model,	and	various	properties	we	require	for	each	document	created
from	this	model.	e.g.

//	specify	model	for	Todo	item
var	Todo	=	mongoose.model('Todo',	{
		//	specify	requirements	for	a	property	of	a	todo	item
		text:	{
				type:	String
		},
		completed:	{
				type:	Boolean
		},
		completedAt:	{
				type:	Number
		}
});

app	-	use	a	model	with	Mongoose

We	can	now	use	our	defined	model	to	create	documents	we	can	store	in	MongoDB.

We	use	our	model	as	a	constructor	to	create	a	new	document	object,	which	we	can	then	save	to	the	connected	DB.
Each	model	requires	the	specified	properties	as	well,	e.g.

//	create	a	new	Todo	item	from	the	model
var	todoItem	=	new	Todo({
		text:	"walk	the	Great	Wall	of	China"
});

//	save	the	object	as	a	document	in	the	DB	-	save	returns	a	promise
todoItem.save().then((doc)	=>	{
		console.log('todo	item	saved',	doc);
},	(error)	=>	{
		console.log('todo	item	not	saved:	',	error);
});

app	-	use	validators,	types,	and	defaults	with	Mongoose

Mongoose	helps	us	specify	default	values	for	properties	in	models,	check	types	&c.,	and	easily	validate	data	before	it
is	saved	to	MongoDB.

Mongoose	supports	many	built-in	validators	for	booleans,	numbers	(min	and	max),	strings	(match,	min	and	max
length...)	&c.

Further	details	at,

mongoosejs.com/docs/validation.html

So,	we	might	add	a	validator	for	properties	in	a	model,	e.g.

//	specify	model	for	Todo	item
var	Todo	=	mongoose.model('Todo',	{
		//	specify	requirements	for	a	property	of	a	todo	item
		text:	{
				type:	String,
				required:	true,	//	text	property	is	required	to	create	a	new	document
				minlength:	1	//	todo	item	must	have	at	least	1	character
				trim:	true	//	removes	leading	and	trailing	spaces
		}
		...
});

These	validators	allow	us	to	customise	the	text	property	for	a	todo	item	before	it	is	saved	to	the	DB.	This	property	is
set	as	required,	has	minimum	character	length	of	1	to	avoid	empty	text,	and	has	all	leading	and	trailing	white	space
removed	from	the	string.	It	will	then	validate	successfully,	and	can	be	saved	to	the	DB.

We	can	also	add	validators	for	other	properties	in	a	model.	e.g.	a	 default 	value	for	a	given	property

...
completed:	{
		type:	Boolean,
		default:	false	//	specify	default	value
}
...

app	-	refactor	code	for	mongoose	and	models

We	can	organise	our	app's	code	into	logical	groupings,	including	a	new	directory	for	database/store	management	files
and	setup.	e.g.	 server/dbms/moongoose-config.js .	This	should	include	config	and	connection	settings	using
Mongoose	for	the	specified	MongoDB.

This	may	then	be	required	in	the	app's	main	 server.js 	file.	e.g.

//	get	mongoose	property	using	ES6	destructuring	-	name	of	created	local	variable	
will	match	the	property	of	the	object
var	{mongoose}	=	require('./dbms/mongoose-config.js');

We	can	then	do	the	same	for	other	logic	in	the	 server.js 	file	not	required	to	setup	and	run	the	Express	server.	e.g.
models,	queries,	&c.

So,	we	can	now	create	some	separate	models	for	the	app,	including	 todo-model.js 	and	 user-model.js .	These
modules	can	then	be	required	in	 server.js ,	e.g.

var	{Todo}	=	require('./models/todo');

Using	the	new	ES6	destructuring,	we	can	create	a	new	variable	with	the	name	of	the	property	on	the	object	returned
from	loading	the	specified	custom	module	file.	So,	we	have	a	variable	called	 Todo ,	which	is	the	property	Todo	of	the
object	returned	from	the	local	file.

This	is	the	whole	point	of	the	 module.exports 	for	the	custom	file,	e.g.

//	module	export
module.exports	=	{
		Todo	//	ES6	shortcut	for	Todo:	Todo
};

An	object	is	returned	for	the	 exports ,	which	contains	a	property	of	 Todo .	 Todo 	references	the	variable	Todo	for
the	model	in	the	custom	file.

app	-	build	a	basic	API	-	setup	server

So,	we	can	now	start	to	build	out	a	basic	API	for	the	app.	For	example,	we	might	add	routes	for	POST	and	GET,	which
will	allow	an	app	to	query	data,	and	then	modify	or	add	data.

We'll	start	by	adding	the	required	Express	to	the	current	app,

npm	install	express	--save

and	a	module	called	 body-parser ,	which	allows	us	to	send	JSON	to	the	server.	In	effect,	 body-parser 	takes	the
string	body	and	parses	it	into	a	JS	object.

npm	install	body-parser	--save

These	modules	will	then	be	required	in	the	 server.js 	file,	and	we	can	add	the	basic	code	for	a	server,	e.g.

...
//	create	express	app
var	app	=	express();

//	set	port	for	server
app.listen(3030,	()	=>	{
		console.log('server	started	on	port	3030...');
});

app	-	build	a	basic	API	-	POST	route

We	can	now	add	a	POST	route	to	allow	our	app	to	save	data,	effectively	by	posting	that	data	to	the	specified	data
store.

For	a	POST	route,	e.g.

app.post('/todos',	(req,	res)	=>	{

});

we	need	to	configure	the	middleware	for	the	 body-parser ,	e.g.

app.use(bodyParser.json());

So,	the	body-parser	module	will	parse	the	body	into	a	JS	object,	which	is	then	attached	to	the	 req 	object	for	the
route.	We	can	also	check	this	relative	to	the	POST	route,	for	example

app.post('/todos',	(req,	res)	=>	{
		console.log(req.body);	//	log	body	parsed	by	body-parser	for	the	req	object...
});

Then,	we	can	create	a	new	Todo	item	using	the	Todo	model,

e.g.

app.post('/todos',	(req,	res)	=>	{
		//	create	todo	item	from	model
		var	todo	=	new	Todo({
				text:	req.body.text	//	specify	text	for	each	todo	item
		});

		todo.save().then((doc)	=>	{
				res.send(doc);	//	send	back	to	the	saved	document	details
		},	(error)	=>	{
				//	send	back	errors...
				res.status(400).send(error);	//	send	back	error	and	status	code	for	request...
		})
});

app	-	build	a	basic	API	-	GET	route

We	can	now	add	a	GET	route	to	find	and	return	all	todo	items	in	the	DB.

It	follows	a	similar	pattern	to	the	previoud	POST	route,

//	GET	route	for	todo	items
app.get('/todos',	(req,	res)	=>	{
		Todo.find().then((todos)	=>	{	//	promised	resolved	with	all	of	the	todos	from	the	
db
				res.send({	//response	-	send	data	back	from	get	route	-	all	of	the	todos
						todos	//	add	todos	array	to	object	-	update	and	modify	object	as	needed	instead	
of	just	sending	array	response...
				});
		},	(error)	=>	{	//	error	callback	if	error	with	promise
				res.status(400).send(error);	//	send	back	error	and	status	code	for	request...
		});
});

We	can	then	start	the	server,

node	server/server.js

and	then	test	the	GET	route	in	Postman,	again	using	the	local	route	of

localhost:3030/todos

with	a	GET	HTTP	method	for	the	request.	Then	press	send	and	check	the	return	from	the	 todos 	route.

app	-	Mongoose	query	tests

There	are	many	different	options	with	Mongoose	for	querying	data,	more	than	simply	 find .

So,	we	can	add	a	new	directory	for	testing	these	queries,	 mongoose-tests ,	and	then	add	a	file	for	these	queries,	
mongoose-queries.js .

We'll	start	by	requiring	the	mongoose	config	file	for	connecting	to	MongoDB,	and	the	model	for	a	Todo.	We'll	also	need
an	ObjectID	from	a	document	in	the	 todos 	collection,	which	we	can	use	for	testing,	e.g.

//	require	mongoose	config
const	{mongoose}	=	require('./../server/dbms/mongoose-config.js');
//	require	models	-	todo
const	{Todo}	=	require('./../server/models/todo-model.js');

//	specify	test	doc	ID
var	docID	=	'5979f0f0f3a968291ae5bf63';	//	ObjectID	for	doc	from	collection

n.b.	Mongoose	is	happy	with	strings	as	IDs,	and	they	do	not	need	to	be	converted	as	with	MongoDB	native	driver.

We	can	then	add	some	queries.

//	find
Todo.find({
		_id:	docID	//	mongoose	will	convert	this	string	to	an	ObjectID
}).then((todos)	=>	{	//	returns	array	of	todo	items
		console.log('all	todo	items	-	',	todos);
});

//	find	one	-	returns	first	match
Todo.findOne({
		completed:	false
}).then((todo)	=>	{	//	returns	single	item	for	first	match
		console.log('single	todo	item	-	',	todo);
});

The	first	query	will	find	all	docs	that	match	the	specified	ObjectID,	whilst	the	second	query	will	return	the	first	document
that	matched	the	specified	query.

If	we're	searching	for	a	single	document,	the	 findOne() 	query	may	be	preferable	as	it	returns	an	object.	The
standard	 find() 	query	returns	an	array	containing	the	found	documents.	For	a	single	document,	this	will	still	be	an
array	with	the	required	object	for	the	document.	The	other	benefit	is	that	 findOne() 	will	return	 null 	for	an	empty
query.	 find() 	will	still	return	an	array,	but	it	will	be	empty	for	no	result	found.

We	might	also	need	to	find	by	a	specific,	known	ObjectID,	e.g.

Todo.findById(docID).then((todo)	=>	{
		console.log('single	todo	item	by	ID	-	',	todo);
});

app	-	Mongoose	validation	checking

We	can	start	cursory	testing	of	false,	missing	or	error-prone	ObjectIDs,	and	then	use	validation	with	Mongoose	to
handle	such	errors	&c.

So,	an	empty	result	set	will	return	an	empty	array	for	 find() ,	and	 null 	for	both	 findOne() 	and	 findById() .
This	means	that	a	false	or	incorrect	ObjectID	will	still	return	a	result	for	the	query.	It	will	not	handle	the	false	or
incorrect	ObjectID	as	an	error,	but	simply	an	empty	return	result.

We	can,	therefore,	check	for	an	empty	result	set	for	the	query,	e.g.

Todo.findById(id).then((todo)	=>	{
		if	(!todo)	{	//	check	for	null	return
				return	console.log('Object	ID	not	found...');
		}
		console.log('Todo	ID	not	found	-	',	todo);
});

If	we	had	an	error	where	the	ObjectID	was	invalid,	perhaps	there	were	too	many	numbers	to	the	ID,	we	could	add	a	
catch 	method	to	 findById() .

This	would	catch	the	error	that	the	ID	is	not	in	the	specified	collection,	and	that	the	ID	itself	is	not	a	valid	format.

e.g.

Todo.findById(docID).then((todo)	=>	{
		if	(!todo)	{	//	check	for	null	return	for	query...
				return	console.log("specified	ID	has	not	been	found...");
		}
		console.log('single	todo	item	by	ID	-	',	todo);
}).catch((error)	=>	console.log(error,	'Specified	ID	is	not	valid	-	try	another	
one...'));	//	catch	validation	error	with	ID	error	&c.	i.e.	ID	is	invalid	-	perhaps	
too	long...

We	might	then	use	this	to	output	a	response	to	the	user	informing	them	that	the	entered	ID	&c.	is	not	valid.

Another	option	for	validation	is	to	integrate	MongoDB	native	driver	with	Mongoose.	We	can	use	a	method	called	
isValid() 	relative	to	the	ObjectID.

We	can	start	by	loading	ObjectID	from	the	MongoDB	native	driver,

const	{ObjectID}	=	require('mongodb');

We	can	then	use	the	method	 isValid() 	relative	to	ObjectID.	e.g.

if	(!ObjectID.isValid(docID))	{
		//	execute	if	ID	not	valid
		console.log('ID	not	valid...');
}

app	-	build	a	basic	API	-	GET	route	with	parameter

We	can	create	an	API	route	to	allow	a	user	to	request	a	route	with	an	additional	parameter	for	the	URL,	e.g.

localhost:3030/todos/4321

The	parameter,	 4321 ,	will	then	be	available	as	a	property	of	the	request	object,	as	specified	below

//	GET	route	with	parameter
app.get('/todos/:id',	(req,	res)	=>	{
		//	get	params	from	req
		var	params	=	req.params;
		console.log(params);
});

The	passed	parameter	in	the	URL	is	specified	as	 :id 	in	the	GET	function	above.	So,	the	above	would	return	an
object	with	a	name	value	pair,

{
		"id":	"4321"
}

For	this	type	of	route	with	user	input,	we'll	need	to	add	some	additional	validation,	error	handling,	and	returns.

So,	we'll	add	the	 ObjectID 	property	from	the	MongoDB	object	(mongoose	native	driver),

var	{ObjectID}	=	require('mongodb');

and	then	check	if	the	passed	ID	parameter	is	valid,

e.g.

//	validate	passed	ID	-	check	not	valid
if	(!ObjectID.isValid(params_id))	{
		//	return	404	status	code	for	invalid	ID
		return	res.status(404).send();
}

We	could	then	use	Mongoose	 findById() 	to	get	the	returned	data	for	the	ID	parameter.	e.g.

Todo.findById(params_id).then((todo)	=>	{
		//	check	if	return	data	available
		if	(!todo)	{
				return	res.status(404).send();
		}

		//	otherwise	return	the	data	for	the	params	ID
		res.send({todo});	//	return	todo	in	object	-	more	flexible	than	default	array	
return
}).catch((error)	=>	{	//	catch	return	errors	for	query
		res.status(400).send();
})

So,	when	we	call	the	 /todos/:id 	route,	we'll	now	get	either	a	successful	return	for	the	query,	or	an	error	message.

app	-	build	a	basic	API	-	DELETE	route	with	parameter

We	can	now	add	a	route	to	remove/delete	a	todo	item	document	by	specified	ID	parameter.

Mongoose	helps	us	by	providing	three	methods	for	removing/deleting	documents	from	MongoDB.

So,	we	might	need	to	remove	all	docs	from	the	DB,	e.g.

//	remove	all	docs	from	DB
Todo.remove({}).then((result)	=>	{	//	empty	object	required	to	delete	all	docs
		consol.log(result);
});

Or	perhaps	find	a	doc	by	ID	and	then	delete	it,	e.g.

//	find	a	single	doc	by	ID	and	remove...
Todo.findByIdAndRemove('597b92e6031086379d868696').then((todo)	=>	{
		console.log(todo);
});

We	can	also	find	a	document	by	another	property	of	the	saved	doc,	e.g.

//	find	a	single	doc	and	remove	from	db	-	single	doc	removed	will	also	be	returned
Todo.findOneAndRemove({completed:	true}).then((todo)	=>	{	//	useful	to	find	doc	
without	ID	-	i.e.	by	text,	author	&c.
		console.log(todo);
});

This	will	still	only	delete	a	single	doc,	the	first	found	in	the	DB.

In	 server.js ,	we	can	then	create	our	route	to	expose	the	delete	options	for	our	API.

e.g.

//	DELETE	route	for	single	doc	with	ID
app.delete('/todos/:id',	(req,	res)	=>	{
		//	get	params	ID	from	req
		var	params_id	=	req.params.id;
		console.log(params_id);

		//	validate	passed	ID	-	check	not	valid
		if	(!ObjectID.isValid(params_id))	{
				//	return	404	status	code	for	invalid	ID
				return	res.status(404).send();
		}

		//	find	doc	by	ID	and	remove	from	DB
		Todo.findByIdAndRemove(params_id).then((todo)	=>	{
				//	check	if	return	data	available
				if	(!todo)	{
						return	res.status(404).send();
				}
				//	otherwise	return	the	data	for	the	deleted	params	ID
				res.send(todo);
		}).catch((error)	=>	{	//	catch	return	errors	for	the	query
				res.status(400).send();
		});
});

The	pattern	used	for	the	route	is	very	similar	to	finding	a	single	todo	by	ID.	We	simply	use	a	different	method	with	the
requested	ID	to	remove	the	doc	from	the	DB.

We	can	then	test	this	new	route	with	Postman,	creating	a	DELETE	request	for	the	server.	We	need	to	select	the
DELETE	http	method	from	the	drop	down	method,	and	then	specify	the	following	sample	route	for	a	single	doc	id,

{{url}}/todos/597b92e6031086379d868695

This	will	now	search	for	this	doc	ID	in	MongoDB,	and	remove	it	if	found.	The	status	return	for	this	query	should	be	
200 ,	and	the	deleted	doc	will	be	returned	in	the	response,	e.g.

{
				"_id":	"597b92e6031086379d868695",
				"__v":	0,
				"text":	"a	todo	item...",
				"completedAt":	null,
				"completed":	true
}

Then,	if	we	run	our	GET	route	for	all	todo	docs,	we	should	see	the	doc	has	now	been	removed	from	the	collection	in
the	DB.

app	-	build	a	basic	API	-	PATCH	route	with	parameter

To	help	with	adding	and	configuring	the	update	PATCH	route,	we	can	use	the	JS	utility	library	Lodash.

npm	install	lodash	--save

and	then	require	this	library	in	the	 server.js 	file,

const	_	=	require('lodash');

We	can	then	setup	the	PATCH	route	itself	for	todos	with	the	ID	params.

e.g.

//	PATCH	route	for	single	doc	with	ID
app.patch('/todos/:id',	(req,	res)	=>	{

});

We'll	then	add	some	necessary	variables,	e.g.

		//	get	params	ID	from	req
		var	params_id	=	req.params.id;
		console.log(params_id);
		//	only	pick	the	properties	we	need	for	an	update	-	stops	false,	unnecessary	&c.	
properties	being	sent	by	the	user
		var	body	=	_.pick(req.body,	['text',	'completed']);	//	pick	method	from	lodash	-	
gets	only	specified	properties	from	return	req

As	before,	we'll	get	the	required	doc	ID	from	the	route	params.	Then,	we'll	create	a	 body 	variable	for	the	data	to
update.	We	can	restrict	the	properties	we	need	for	the	doc	update	by	only	picking	the	necessary	properties	from	the	
req 	object.

As	we've	done	for	other	routes	with	an	ID	param,	we	can	check	if	the	requested	ID	is	valid	or	not,

//	validate	passed	ID	-	check	not	valid
if	(!ObjectID.isValid(params_id))	{
		//	return	404	status	code	for	invalid	ID
		return	res.status(404).send();
}

Then,	we	need	to	check	the	 completed 	state	of	the	todo	item	doc,	e.g.

//	check	boolean	return	for	completed	i.e.	true	-	reflects	simple	toggle	update	from	
false	to	true...
if	(_.isBoolean(body.completed)	&&	body.completed)	{
		//	app	uses	boolean	=	true	as	reason	to	set	completedAt	to	current	Unix	timestamp	-	
not	set	by	user
		body.completedAt	=	new	Date().getTime();	//	returns	no.	of	ms	from	midnight	1	jan	
1970	to	current	date...
}	else	{
		//	keep	doc	completed	as	false
		body.completed	=	false;
		//	keep	completedAt	as	not	set	-	null
		body.completedAt	=	null;
}

So,	we	can	check	that	the	return	 completed 	property	is,	indeed,	a	boolean,	and	then	check	its	value.	A	simple
conditional	statement	is	then	used	to	set	the	 completedAt 	time	in	milliseconds,	or	persist	the	todo	item	doc	as	not
yet	completed.

Finally,	we	can	update	the	requested	doc	in	the	DB.

e.g.

//	update	the	requested	doc	in	the	db	-	using	Mongoose	method,	findByIdAndUpdate()
Todo.findByIdAndUpdate(params_id,	{$set:	body},	{new:	true}).then((todo)	=>	{	//	
MongoDB	update	-	set	object	to	body,	and	return	the	new	doc	object	-	new:	true	
(mongoose	naming	for	returnOriginal)
		//	check	todo	object	exists	-	return	404	for	not	found
		if	(!todo)	{
				return	res.status(404).send();
		}
		//	if	todo	found	-	send	todo	object
		res.send({todo});
}).catch((error)	=>	{	//	catch	error
		res.status(400).send();	//	send	back	error	status	-	bad	request	code
});

We	can	use	a	Mongoose	method,	 findByIdAndUpdate() ,	passing	the	doc	id,	and	some	options	for	the	update.	The
first	option	is	the	MongoDB	option	to	 $set 	some	data	for	the	doc.	In	this	example,	we	can	simply	return	the	 body
object,	and	set	it	as	the	updated	data	for	this	doc.	Then,	we	can	tell	Mongoose	to	return	the	updated	doc	object.	This
might	be	useful	to	check	and	inform	the	user	of	the	successful	update.

In	the	 then() 	method,	we	can	check	that	the	todo	object	exists,	and	handle	any	errors.	If	no	errors,	we	can	simply
send	the	todo	object.

We	can	now	test	this	PATCH	route	with	Postman,	creating	a	test	request	for	the	PATCH	http	method,	and	saving	it	to
the	todos	app	collection	in	Postman.	A	sample	return	object	for	a	successfully	updated	doc	with	PATCH	is	as	follows,

{
				"todo":	{
								"_id":	"597df45fbc86a956132315fb",
								"__v":	0,
								"text":	"another	todo	item...",
								"completedAt":	1501442182468,
								"completed":	true
				}
}

This	return	is	in	response	to	simply	updating	the	 completed 	property	to	 true .

app	-	create	a	separate	database	for	tests

As	we	run	these	tests,	we	wipe	the	local	DB	to	ensure	we're	running	the	test	cases	with	known	data	&c.

However,	for	local	development	this	can	cause	issues	and	is	annoying	for	ongoing	development.

Instead,	we	can	simply	create	and	specify	a	separate	local	DB	for	testing	these	test	cases.	We'll	also	need	to	update
our	app	to	recognise	the	different	process	environments,	including	remote	(e.g.	Heroku),	local	development,	and	local
testing	with	Mocha.

The	Express	module	popularised	an	environment	variable	for	an	app's	process,	e.g.

process.env.NODE_ENV	===	'production'	//	value	set	by	Heroku	for	live	app

We	might	also	set	the	value	of	this	environment	variable	to	 testing 	or	 development 	for	local	development
purposes.

We	can	also	add	a	new	variable	to	the	 server.js 	file	for	the	current	process	environment	for	the	app	or	simply	a
default	environment,	e.g.

var	env	=	process.env.NODE_ENV	||	'development';

Then,	we	need	to	configure	the	available	 NODE_ENV 	values	in	 package.json .

e.g.

"test":	"export	NODE_ENV=test	||	SET	\"NODE_ENV=test\"	&&	mocha	server/**/*.test.js"

This	will	set	the	environment	to	testing	for	any	test	files	we	run	for	this	app.	The	first	option,	using	 export ,	is
compatible	with	OS	X	and	Linux,	whilst	Windows	uses	the	 SET 	command.

With	the	environment	variable	now	set	to	either	development,	testing	or	production,	we	can	now	check	its	value	in	the	
server.js 	file	with	a	standard	conditional	statement,	e.g.

if	(env	===	'development')	{
		process.env.PORT	=	3030;
		process.env.MONGODB_URI	=	'mongodb://localhost:27017/NodeTodoApp';
}	else	if	(env	===	'test')	{
		process.env.PORT	=	3030;
		process.env.MONGODB_URI	=	'mongodb://localhost:27017/NodeTodoAppTester';
}

We	can	now	update	the	 mongoose-config.js 	file	to	connect	to	the	required	DB	for	the	current	environment,	e.g.

//connect	to	MongoDB	using	Mongoose	-	use	mLab	or	local	uri
mongoose.connect(process.env.MONGODB_URI);	//	process	environment	returns	mLab	uri	-	
url	set	by	process.env	in	server.js

So,	when	we	run	our	local	app	the	environment	will	be	set	to	 development ,	which	will	set	the	MongoDB	to	
NodeTodoApp .	If	then	run	the	tests	with	Mocha,	the	environment	will	be	set	to	 test ,	and	the	test	DB	will	be	used.

With	this	environment	structure,	we	can	now	maintain	a	working	DB	for	each	environment.

app	-	basic	refactor	of	code	structure

A	simple	refactor	of	app	code.

We	can	move	the	environment	variables	and	settings	from	the	current	 server.js 	file	to	a	separate	file,	such	as	
config.js 	in	a	 config 	directory.

Then,	we	simply	require	this	local	file	in	the	 server.js 	file.

app	-	CRUD	API	for	todos	app

So,	we	can	create	a	todo	item,	read	all	or	a	single	todo	item,	update	a	single	todo	item,	and	finally	delete	a	specified
todo	item	as	necessary.

A	standard	CRUD	API	for	the	 node-todos-api 	app.

