
Extra	Notes	-	Node.js	Todos	API	-	Testing
Dr	Nick	Hayward

Contents

API	testing	with	Postman
test	POST	route	with	Postman
additional	testing	for	API	routes	-	POST
additional	testing	for	API	routes	-	GET
Mongoose	query	tests
Mongoose	validation	checking
use	Postman	with	Heroku	app
additional	testing	for	API	routes	-	DELETE
additional	testing	for	API	routes	-	PATCH
create	a	separate	database	for	tests

app	-	API	testing	with	Postman

A	very	useful,	and	commonly	used,	tool	to	help	develop	and	test	REST	APIs	is	Postman.	Further	details	available	at
the	following	URL,

https://www.getpostman.com

Apps	available	for	MacOS	(OS	X),	Windows,	and	Linux.	Download	package	for	required	OS,	and	follow	usual	install
instructions.

You	can	also	install	an	app	for	Chrome.

To	use	Postman	either	open	the	desktop	app	or	Chrome	app,

chrome://apps	(then	select	Postman	app)

and	start	with	the	Builder	tab	in	the	app	window.

We	can	start	with	a	 GET 	HTTP	method,	and	then	enter	a	test	URL	for	the	request.	e.g.

https://maps.googleapis.com/maps/api/geocode/json?address=3%20the%20strand%20brixham

This	will	return	some	JSON,	and	there	is	usually	tabs	available	for	Body,	Cookies,	Headers,	and	Tests.	There	will	also
be	some	extra	sub-tabs	for	Pretty,	Raw,	and	Preview.

As	we	build	out	a	custom	API,	we	can	then	test	it	using	Postman.

app	-	build	a	basic	API	-	test	POST	route	with	Postman

We	can	now	start	the	server,	and	then	test	this	new	route	with	Postman.

In	Postman,	change	the	HTTP	method	to	POST,	and	then	enter	the	url	for	the	created	API	route,	e.g.

localhost:3030/todos

Then,	select	the	Body	tab	in	Postman,	and	add	a	sample	todo	object,	e.g.

{
		"text":	"find	the	source	of	the	Nile..."
}

Then,	hit	Send	to	test	the	POST	route	for	the	app.	If	successful,	the	console	should	log	the	saved	object.

Also,	if	the	POST	route	is	working	correctly	a	send	response	will	be	returned	for	the	Todo	data,	along	with	a	status
code.	For	success,	Postman	will	show	a	 200 	status	code.

By	modifying	the	body	of	the	test	object	for	the	POST	route	in	Postman,	we	can	test	errors,	model	defaults	&c.

e.g.	if	we	removed	the	content	of	the	 text 	for	a	todo,	the	response	will	show	errors	with	a	status	code	of	200.

app	-	additional	testing	for	API	routes	-	POST

For	broader	testing	of	our	app,	and	its	functions,	we	can	once	more	use

Expect	-	for	assertions
Mocha	-	overall	test	suite
Supertest	-	test	Express	route
Nodemon	-	helps	with	the	test	watch	script

So,	we	need	to	install	them	for	our	app,

npm	i	expect	mocha	supertest	nodemon	--save-dev

Then	create	a	new	folder	in	the	 server 	directory	for	these	tests,	e.g.	 /server/tests 	with	a	test	file	for	the	server,	
server.test.js .

In	this	 server.test.js 	file,	we	can	then	add	the	require	modules	and	local	scripts	for	the	tests,	e.g.

//	require	node	modules
const	expect	=	require('expect');
const	request	=	require('request');
//	require	local	files
const	{app}	=	require('./../server.js');
const	{todo}	=	require('./../models/todo-model.js')

Then	we	can	add	a	 describe 	block	for	the	 POST 	API	routes.

For	example,

//	describe	for	the	POST	API	route
describe('POST	/todos',	()	=>	{
		//	add	test	cases	for	this	route
		it('should	create	a	new	todo	item',	(done)	=>	{
				var	text	=	'some	text	for	a	todo	item...';

				//	use	Supertest	to	test	POST
				request(app)
						.post('/todos')
						.send({
								text	//	ES6	shortcut	for	text:	text
						})
						.expect(200)	//	assertion	to	test	status	code
						.expect((res)	=>	{	//	create	custom	assertion	to	test	response	body	text
								expect(res.body.text).toBe(text);	//	test	that	the	response	text	matches	the	
text	specified	above	in	var	text
						})
						.end((error,	res)	=>	{	//	check	todo	item	was	saved	to	MongoDB
								if	(error)	{
										return	done(err);
								}
								Todo.find().then((todos)	=>	{
										expect(todos.length).toBe(1);
										expect(todos[0].text).toBe(text);
										done();
								}).catch((e)	=>	done(e));	//	catch	any	errors	in	callback	-	then	pass	to	
done()	to	finish
						});

		});
});

In	this	test	example,	we're	adding	a	number	of	assertions	to	test	the	response	from	the	POST	API	route.	We	start	by
testing	the	text	response	and	status	code,	then	add	a	check	for	the	end	of	the	POST	request	to	ensure	that	the	Todo
item	is	saved	correctly	to	MongoDB.	Finally,	we	add	a	catch	statement	to	check	for	errors	in	the	callback,	which	are
then	passed	to	 done() 	to	finish	the	execution	of	this	describe	block.

However,	when	we	check	the	data	store	for	Todo	items,	we're	assuming	that	there	is	always	 0 	items	saved	before
we	test	this	new	Todo	item.

For	testing	purposes,	we	can	overcome	this	issue	by	simply	wiping	the	data	store	before	any	test	code	is	executed,
e.g.

//	before	a	describe	block	is	executed	-	wipe	existing	todo	items	stored	in	data	
store
beforeEach((done)	=>	{
		Todo.remove({}).then(()	=>	done())
});

In	our	app's	 package.json 	file,	we	can	now	update	the	 "scripts" 	value	by	adding	a	 test-watch 	option	for
Nodemon.	e.g.

"test":	"mocha	server/**/*.test.js",
"test-watch":	"nodemon	--exec	'npm	test'"

and	then	run	the	test	using	the	following	command,

npm	run	test-watch

An	extra	test	is	to	check	that	a	todo	item	is	not	created	with	invalid	data,	e.g.

it('should	not	create	a	todo	item	with	invalid	data',	(done)	=>	{
		request(app)
				.post('/todos')
				.send({})	//	send	empty	data	to	post	route
				.expect(400)	//	expect	status	code	400
				.end((error,	res)	=>	{
						if	(error)	{
								return	done(error);	//	finish	test	if	error	returned
						}

						//	find	and	return	all	todos	in	the	DB	-	DB	wiperd	beforeEach	-	should	be	0	if	
no	todo	item	created...
						Todo.find().then((todos)	=>	{
								expect(todos.length).toBe(0);
								done();
						}).catch((e)	=>	done(e));
				});
});

If	we	now	run	the	same	test,	we	should	get	both	test	passing.	One	for	adding	a	todo	item	to	the	DB,	and	the	other	for
invalid	data	not	being	saved	to	the	DB.	e.g.	output

...
		POST	/todos
				✓	should	create	a	new	todo	item	(71ms)
				✓	should	not	create	a	todo	item	with	invalid	data

		2	passing	(118ms)

[nodemon]	clean	exit	-	waiting	for	changes	before	restart

app	-	additional	testing	for	API	routes	-	GET

To	test	GET	routes,	we'll	need	to	ensure	that	we	have	some	data	in	the	DB	to	query.	In	tests	for	the	POST	route,	we
clear	the	DB	on	each	pass	of	the	test,	so	we	need	to	modify	this	 beforeEach() 	function	to	seed	some	known
dummy	data.	e.g.

//	create	some	dummy	data	-	test	todo	items
const	todos	=	[
		{text:	'a	todo	item...'},
		{text:	'another	todo	item...'}
];

Then,	we	need	to	update	the	 beforeEach() 	function	in	the	 server.test.js 	file.	As	we're	adding	multiple	objects
at	the	same	time,	we	can	now	use	the	new	MongoDB	function	 insertMany ,	e.g.

beforeEach((done)	=>	{
		Todo.remove({}).then(()	=>	{
				return	Todo.insertMany(todos);
		}).then(()	=>	done());
});

We'll	also	need	to	modify	any	checks	with	the	length	property	to	match	these	dummy	data	objects.

We	can	add	further	testing	for	the	GET	route	with	a	test	case,

//	describe	for	the	GET	API	route
describe('GET	/todos',	()	=>	{
		it('should	GET	all	todo	items...dummy	data	found',	(done)	=>	{
				request(app)
						.get('/todos')	//	specify	api	url
						.expect(200)	//	check	status	code	-	200	for	OK
						.expect((res)	=>	{	//	custom	assertion
								expect(res.body.todos.length).toBe(2);
						})
						.end(done);
		});
});

and	then	run	our	tests	from	the	terminal,

npm	run	test-watch

app	-	Mongoose	query	tests

There	are	many	different	options	with	Mongoose	for	querying	data,	more	than	simply	 find .

So,	we	can	add	a	new	directory	for	testing	these	queries,	 mongoose-tests ,	and	then	add	a	file	for	these	queries,	
mongoose-queries.js .

We'll	start	by	requiring	the	mongoose	config	file	for	connecting	to	MongoDB,	and	the	model	for	a	Todo.	We'll	also	need
an	ObjectID	from	a	document	in	the	 todos 	collection,	which	we	can	use	for	testing,	e.g.

//	require	mongoose	config
const	{mongoose}	=	require('./../server/dbms/mongoose-config.js');
//	require	models	-	todo
const	{Todo}	=	require('./../server/models/todo-model.js');

//	specify	test	doc	ID
var	docID	=	'5979f0f0f3a968291ae5bf63';	//	ObjectID	for	doc	from	collection

n.b.	Mongoose	is	happy	with	strings	as	IDs,	and	they	do	not	need	to	be	converted	as	with	MongoDB	native	driver.

We	can	then	add	some	queries.

//	find
Todo.find({
		_id:	docID	//	mongoose	will	convert	this	string	to	an	ObjectID
}).then((todos)	=>	{	//	returns	array	of	todo	items
		console.log('all	todo	items	-	',	todos);
});

//	find	one	-	returns	first	match
Todo.findOne({
		completed:	false
}).then((todo)	=>	{	//	returns	single	item	for	first	match
		console.log('single	todo	item	-	',	todo);
});

The	first	query	will	find	all	docs	that	match	the	specified	ObjectID,	whilst	the	second	query	will	return	the	first	document
that	matched	the	specified	query.

If	we're	searching	for	a	single	document,	the	 findOne() 	query	may	be	preferable	as	it	returns	an	object.	The
standard	 find() 	query	returns	an	array	containing	the	found	documents.	For	a	single	document,	this	will	still	be	an
array	with	the	required	object	for	the	document.	The	other	benefit	is	that	 findOne() 	will	return	 null 	for	an	empty

query.	 find() 	will	still	return	an	array,	but	it	will	be	empty	for	no	result	found.

We	might	also	need	to	find	by	a	specific,	known	ObjectID,	e.g.

Todo.findById(docID).then((todo)	=>	{
		console.log('single	todo	item	by	ID	-	',	todo);
});

app	-	Mongoose	validation	checking

We	can	start	cursory	testing	of	false,	missing	or	error-prone	ObjectIDs,	and	then	use	validation	with	Mongoose	to
handle	such	errors	&c.

So,	an	empty	result	set	will	return	an	empty	array	for	 find() ,	and	 null 	for	both	 findOne() 	and	 findById() .
This	means	that	a	false	or	incorrect	ObjectID	will	still	return	a	result	for	the	query.	It	will	not	handle	the	false	or
incorrect	ObjectID	as	an	error,	but	simply	an	empty	return	result.

We	can,	therefore,	check	for	an	empty	result	set	for	the	query,	e.g.

Todo.findById(id).then((todo)	=>	{
		if	(!todo)	{	//	check	for	null	return
				return	console.log('Object	ID	not	found...');
		}
		console.log('Todo	ID	not	found	-	',	todo);
});

If	we	had	an	error	where	the	ObjectID	was	invalid,	perhaps	there	were	too	many	numbers	to	the	ID,	we	could	add	a	
catch 	method	to	 findById() .	This	would	catch	the	error	that	the	ID	is	not	in	the	specified	collection,	and	that	the
ID	itself	is	not	a	valid	format.	e.g.

Todo.findById(docID).then((todo)	=>	{
		if	(!todo)	{	//	check	for	null	return	for	query...
				return	console.log("specified	ID	has	not	been	found...");
		}
		console.log('single	todo	item	by	ID	-	',	todo);
}).catch((error)	=>	console.log(error,	'Specified	ID	is	not	valid	-	try	another	
one...'));	//	catch	validation	error	with	ID	error	&c.	i.e.	ID	is	invalid	-	perhaps	
too	long...

We	might	then	use	this	to	output	a	response	to	the	user	informing	them	that	the	entered	ID	&c.	is	not	valid.

Another	option	for	validation	is	to	integrate	MongoDB	native	driver	with	Mongoose.	We	can	use	a	method	called	
isValid() 	relative	to	the	ObjectID.

We	can	start	by	loading	ObjectID	from	the	MongoDB	native	driver,

const	{ObjectID}	=	require('mongodb');

We	can	then	use	the	method	 isValid() 	relative	to	ObjectID.	e.g.

if	(!ObjectID.isValid(docID))	{
		//	execute	if	ID	not	valid
		console.log('ID	not	valid...');
}

app	-	use	Postman	with	Heroku	app

We	can	now	test	our	new	Heroku	app	with	Postman,	both	GET	and	POST	requests	for	the	new	remote	app.

We	might	test	sending	a	POST	request	to	the	app,	e.g.

https://your-app-url.herokuapp.com/todos

which	will	create	a	test	todo	item	that	is	set	in	the	app.	The	return	object	for	this	POST	request	will	be	as	follows,

{
				"__v":	0,
				"text":	"postman	test	todo	item	-	another	one...",
				"_id":	"597cd962d828090011f2b9ce",
				"completedAt":	null,
				"completed":	false
}

If	we	then	submit	a	GET	request	to	the	app's	API,

https://your-app-url.herokuapp.com/todos

we'll	get	the	expected	object	containing	an	array	of	todo	items,	e.g.

{
				"todos":	[
								{
												"_id":	"597cd962d828090011f2b9ce",
												"text":	"postman	test	todo	item	-	another	one...",
												"__v":	0,
												"completedAt":	null,
												"completed":	false
								}
]
}

We	can	test	retrieving	a	single	todo	item	by	ID,	e.g.

https://your-app-url/todos/597cd962d828090011f2b9ce

which	will	return	an	object	with	the	single	todo	item,

{
				"todo":	{
								"_id":	"597cd962d828090011f2b9ce",
								"text":	"postman	test	todo	item	-	another	one...",
								"__v":	0,
								"completedAt":	null,
								"completed":	false
				}
}

To	ease	switching	test	environments	in	Postman,	we	can	create	environments	for	local,	Heroku	&c.	and	then	save
them	for	easy	recall.

e.g.	in	the	top	right	corner	of	Postman	is	a	drop	down	menu	for	environemnt.

So,	we	can	now	create	an	environment	for	the	local	dev	and	remote	dev	projects.

In	Manage	Environments,	we	can	add	an	environment,	e.g.	 Todo	App	Local ,	and	then	set	values	for	the	following

url	=	localhost:3030

Then,	we	can	do	the	same	for	Heroku,	and	set	the	URL	value	to	the	Heroku	app	url,	e.g.

https://your-app-url.herokuapp.com

We	can	also	abstract	routes	and	params	as	required	for	testing	with	defined	environments.

e.g.	for	the	GET	request	in	the	Todo	App	collection	we	can	modify	the	URL	as	follows,

{{url}}/todos

If	we	switch	to	either	the	local	or	Heroku	environment,	this	single	request	is	now	abstracted	to	either	environment.

We	can	also	do	the	same	for	the	POST	request	in	the	collection.

app	-	additional	testing	for	API	routes	-	DELETE

We	need	to	add	some	test	cases	for	the	DELETE	route,	e.g.

//	check	DELETE	route	with	params	ID
describe('DELETE	/todos/:id',	()	=>	{
		//	test	case	-	check	requested	todo	doc	item	has	been	removed
		it('should	delete	a	doc	for	a	todo	item',	(done)	=>	{

		});

		//	test	case	-	check	return	status	code	for	doc	not	found	in	DB
		it('should	return	a	404	status	code	for	doc	not	found',	(done)	=>	{

		});

		//	test	case	-	check	if	doc	object	id	is	valid
		it('should	return	a	404	status	code	for	invalid	ObjectID...',	(done)	=>	{

		});

});

For	the	first	test	case,	we	need	to	send	the	query	to	the	DB,	check	the	response,	and	then	check	the	DB	itself	to
ensure	that	the	doc	was	actually	deleted	successfully.

We	can	then	fill	out	the	first	test	case	as	follows,

//	test	case	-	check	requested	todo	doc	item	has	been	removed
it('should	delete	a	doc	for	a	todo	item',	(done)	=>	{
		//	specify	test	todo	to	delete
		var	hexId	=	todos[1]._id.toHexString();

		request(app)
				.delete(`/todos/${hexId}`)	//	remove	the	specified	doc	by	id
				.expect(200)	//	assert	a	200	status	code	for	the	successful	doc	deletion
				.expect((res)	=>	{	//	add	custom	assertion
						expect(res.body.todo._id).toBe(hexId);	//	assert	that	response	body	todo	doc	id	
matches	the	hexId
				})
				.end((error,	res)	=>	{	//	finish	request
						if	(error)	{	//	handle	error
								return	done(error);	//	if	error	exists	simply	return	the	request	as	done...
						}

						//	find	doc	id	in	db
						Todo.findById(hexId).	then((todo)	=>	{
								expect(todo).toNotExist();	//	check	that	doc	id	does	not	exist	in	db
								done();	//	call	done	and	finish	async	all
						}).catch((error)	=>	done(error));	//	catch	any	error	for	async	call	-	return	
done	if	error	caught...
				});
});

We	can	then	run	our	tests	as	usual	with	the	following	command,

npm	run	test-watch

We	can	then	update	the	remaining	two	tests	for	the	DELETE	route,

//	test	case	-	check	return	status	code	for	doc	not	found	in	DB
it('should	return	a	404	status	code	for	doc	not	found',	(done)	=>	{
		var	hexID	=	new	ObjectID().toHexString();

		request(app)
				.delete(`/todos/${hexID}`)	//	DELETE	route	to	test	with	param	ID
				.expect(404)	//	assert	-	status	code	should	be	404
				.end(done);	//	call	end	and	pass	done	to	finish	test	case
});

//	test	case	-	check	if	doc	object	id	is	valid
it('should	return	a	404	status	code	for	invalid	ObjectID...',	(done)	=>	{
		request(app)
				.delete('/todos/abc123def')	//	pass	in	test	invalid	string	-	ObjectID	has	v.	
specific	pattern
				.expect(404)
				.end(done);
});

The	final	two	test	cases	follow	the	same	pattern	as	testing	for	a	GET	route.	We	simply	update	the	route	to	match	the
required	DELETE	route.

app	-	additional	testing	for	API	routes	-	PATCH

To	be	able	to	test	PATCH	routes	for	todo	items,	we'll	need	to	update	the	dummy	todo	objects	to	include	a	 completed
and	 completedAT 	property,	e.g.

//	update	dummy	todo	items	with	test	ID	name:value	pair	property
const	todos	=	[
		{
				_id:	new	ObjectID(),
				text:	'a	todo	item...'
		},
		{
				_id:	new	ObjectID(),
				text:	'another	todo	item...',
				completed:	true,
				completedAt:	230797
		}
];

Then,	we	need	to	add	some	test	cases	for	the	PATCH	route,	e.g.

//	check	PATCH	route	with	params	ID
describe('PATCH	/todos/:id',	()	=>	{
		//	test	case	-	check	update	with	params	for	doc	id
		it('should	patch	and	update	the	todo	item',	(done)	=>	{

		});

		//	test	case	-	check	completedAt	relative	to	complete	property
		it('should	reset	and	clear	completedAt	property	when	todo	item	is	not	completed',	
(done)	=>	{

		});

});

For	the	first	test	case,	we	can	add	the	following	requests	and	assertions	to	test	this	route,	e.g.

//	test	case	-	check	update	with	params	for	doc	id
it('should	patch	and	update	the	todo	item',	(done)	=>	{
		//	get	ID	from	dummy	todos	object	-	first	object
		var	hexId	=	todos[0]._id.toHexString();
		//	text	for	testing	PATCH	update
		var	text	=	'some	test	new	text...';

		//	setup	test	with	assertions
		request(app)
				.patch(`/todos/${hexId}`)
				.send({
						completed:	true,
						text	//	ES6	shortcute	for	name:value	pair
				})
				.expect(200)
				.expect((res)	=>	{
						expect(res.body.todo.text).toBe(text);
						expect(res.body.todo.completed).toBe(true);
						expect(res.body.todo.completedAt).toBeA('number');
				})
				.end(done);
});

With	this	first	test	case,	we're	updating	the	todo	item	with	text,	and	then	setting	the	 completed 	property	to	true.	We
can	then	check	the	response	with	assertions	for	the	new	text,	 completed 	property	set	to	true,	and	the	updated	

completedAt 	property	to	a	number	for	the	time	in	ms.

The	second	test	case	can	then	follow	a	similar	pattern,	e.g.

//	test	case	-	check	completedAt	relative	to	complete	property
it('should	reset	and	clear	completedAt	property	when	todo	item	is	not	completed',	
(done)	=>	{
		//	get	ID	from	dummy	todos	object	-	second	object
		var	hexId	=	todos[1]._id.toHexString();
		//	text	for	testing	PATCH	update
		var	text	=	'some	more	test	new	text...';

		//	setup	test	with	assertions
		request(app)
				.patch(`/todos/${hexId}`)
				.send({
						completed:	false,	//	todo	item	not	completed
						text	//	ES6	shortcute	for	name:value	pair
				})
				.expect(200)
				.expect((res)	=>	{
						expect(res.body.todo.text).toBe(text);	//	assert	text	matches	dummy	text
						expect(res.body.todo.completed).toBe(false);	//assert	completed	property	false	
-	todo	item	not	completed
						expect(res.body.todo.completedAt).toNotExist();	//	assert	completedAt	does	not	
exist	-	should	be	null...
				})
				.end(done);
});

In	this	example,	we're	now	getting	the	id	for	the	second	test	todo	item	object,	and	then	sending	some	new	test	text,
and	setting	the	 completed 	property	to	false.	This	means	we	need	to	slightly	modify	the	assertions	to	check	for	
completed 	property	as	false,	and	that	the	 completedAt 	property	does	not	exist.	There	is	no	number,	just	a	value
set	to	 null 	for	this	property.

app	-	create	a	separate	database	for	tests

As	we	run	these	tests,	we	wipe	the	local	DB	to	ensure	we're	running	the	test	cases	with	known	data	&c.

However,	for	local	development	this	can	cause	issues	and	is	annoying	for	ongoing	development.

Instead,	we	can	simply	create	and	specify	a	separate	local	DB	for	testing	these	test	cases.	We'll	also	need	to	update
our	app	to	recognise	the	different	process	environments,	including	remote	(e.g.	Heroku),	local	development,	and	local
testing	with	Mocha.

The	Express	module	popularised	an	environment	variable	for	an	app's	process,	e.g.

process.env.NODE_ENV	===	'production'	//	value	set	by	Heroku	for	live	app

We	might	also	set	the	value	of	this	environment	variable	to	 testing 	or	 development 	for	local	development
purposes.

We	can	also	add	a	new	variable	to	the	 server.js 	file	for	the	current	process	environment	for	the	app	or	simply	a
default	environment,	e.g.

var	env	=	process.env.NODE_ENV	||	'development';

Then,	we	need	to	configure	the	available	 NODE_ENV 	values	in	 package.json ,	e.g.

"test":	"export	NODE_ENV=test	||	SET	\"NODE_ENV=test\"	&&	mocha	server/**/*.test.js"

This	will	set	the	environment	to	testing	for	any	test	files	we	run	for	this	app.	The	first	option,	using	 export ,	is
compatible	with	OS	X	and	Linux,	whilst	Windows	uses	the	 SET 	command.

With	the	environment	variable	now	set	to	either	development,	testing	or	production,	we	can	now	check	its	value	in	the	
server.js 	file	with	a	standard	conditional	statement,	e.g.

if	(env	===	'development')	{
		process.env.PORT	=	3030;
		process.env.MONGODB_URI	=	'mongodb://localhost:27017/NodeTodoApp';
}	else	if	(env	===	'test')	{
		process.env.PORT	=	3030;
		process.env.MONGODB_URI	=	'mongodb://localhost:27017/NodeTodoAppTester';
}

We	can	now	update	the	 mongoose-config.js 	file	to	connect	to	the	required	DB	for	the	current	environment,	e.g.

//connect	to	MongoDB	using	Mongoose	-	use	mLab	or	local	uri
mongoose.connect(process.env.MONGODB_URI);	//	process	environment	returns	mLab	uri	-	
url	set	by	process.env	in	server.js

So,	when	we	run	our	local	app	the	environment	will	be	set	to	 development ,	which	will	set	the	MongoDB	to	
NodeTodoApp .	If	then	run	the	tests	with	Mocha,	the	environment	will	be	set	to	 test ,	and	the	test	DB	will	be	used.

With	this	environment	structure,	we	can	now	maintain	a	working	DB	for	each	environment.

