
Extra	Notes	-	Node.js	&	Express	Starter	App
Dr	Nick	Hayward

Starter	App

A	collection	of	notes	on	creating	a	starter	app	for	Node.js	and	Express

Contents

Intro
getting	started
initial	structure

server.js

define	Git	Ignore
initial	Heroku	config
initial	GitHub	push
setup	Heroku	to	host	project

use	Heroku	CLI	with	multiple	accounts
rename	heroku	app	from	cli

intro

This	starter	template	creates	a	basic	Express	and	Node.js	based	app,	which	may	be	pushed	to	GitHub	and	hosted	on
Heroku.

getting	started

Start	by	creating	a	new	directory	for	the	local	project	on	the	host	machine,	e.g.

mkdir	node-express-starter

Then,	we	can	simply	change	to	this	directory	and	start	development

cd	node-express-starter

As	we're	building	a	Node.js	based	app,	we	can	start	by	initialising	our	local	project.	e.g.

npm	init

As	this	command	is	run,	we	can	then	answer	some	simple	questions	to	add	metadata	for	the	current	project.	A	
package.json 	file	will	be	created	in	the	root	directory	of	the	current	project.

We	also	need	to	add	version	control	to	this	project,	which	is	necessary	for	both	GitHub	and	Heroku	usage.	e.g.

git	init

We	can	then	install	Express	using	NPM,

npm	i	express	--save

initial	structure

For	a	Node.js	and	Express	based	app	we	can	start	by	adding	a	 server.js 	file	to	a	 server 	directory	at	the	root	of
the	project.

|--	node-express-starter
				|__	.git
				|__	node_modules
				|__	package.json
				|__	server
								|__	server.js

We	might	also	add	an	initial	directory	to	serve	static	files,	e.g.	 public

|--	node-express-starter
				|__	.git
				|__	node_modules
				|__	package.json
				|__	public
								|__	index.html
				|__	server
								|__	server.js

server.js

Add	some	initial	setup	and	config	to	the	 server.js 	file	to	get	a	basic	server	up	and	running.

//	require	node	module	'path'	-	built-in	module
const	path	=	require('path');
//	require	express	module
const	express	=	require('express');

//	define	path	to	static	dir	public
const	publicDir	=	path.join(__dirname,	'../public');
//	define	variable	to	call	express	methods
var	app	=	express();

//	configure	express	static	middleware
app.use(express.static(publicDir));

//	start	server	on	port	3030	-	add	callback	function
app.listen(3030,	()	=>	{
		console.log('server	running	on	port	3030');
});

This	basic	server	will	allow	us	to	server	static	files	from	the	 public 	directory,	e.g.	a	starter	 index.html 	file

<!DOCTYPE	html>
<html>
		<head>
				<meta	charset="utf-8">
				<title>starter	template</title>
		</head>
		<body>
				<h3>Express	starter	template</h3>
		</body>
</html>

define	Git	Ignore

To	push	a	Git	based	project	to	GitHub,	we	usually	start	by	defining	a	 .gitignore 	file.	e.g.

node_modules/

We	use	this	file	to	define	project	files	and	directories	Git	will	omit	for	tracking	&c.,	such	as	the	Node.js	directory	for
installed	modules.

initial	Heroku	config

We	need	to	update	 server.js 	to	define	a	port	for	the	process	environment,	e.g.

const	port	=	process.env.PORT	||	3030;

This	allows	us	to	use	the	app	on	a	configured	Heroku	hosting,	and	for	local	testing	with	the	port	3030.

We'll	update	our	server	to	use	this	path,

app.listen(port,	()	=>	{
		console.log(`server	running	on	port	${port}`);
});

Then,	we	need	to	update	the	 package.json 	file	to	tell	Heroku	how	to	start	the	app,	and	the	required	minimum
version	of	Node.js.

...
"scripts":	{
		"start":	"node	server/server.js",
		"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"
},
"engines":	{
		"node":	"9.2.1"
},
...

initial	GitHub	push

This	assumes	an	existing	GitHub	account,	and	requirement	to	create	a	new	repo	for	this	project.

On	GitHub,	we	may	simply	create	a	new	repository.	This	may	then	be	used	with	the	local	Git	project	repository.

To	push	our	local	project	to	this	new	GitHub	repo,	we	need	to	commit	any	changes	in	the	local	repository	before
adding	the	remote	repo.

git	status
git	add	.
git	commit	-m	"initial	commit"

Then,	we	can	run	the	commands	GitHub	provides	for	a	newly	created	repo,	e.g.

git	remote	add	origin	git@github.com:your_username/repo_name.git
git	push	-u	origin	master

This	will	set	the	remote	repo	for	synchronisation	with	the	current	local	Git	repo,	and	then	push	the	recent	commit	to
this	remote	repo.

setup	Heroku	to	host	project

In	the	root	directory	of	the	local	project,	we	can	use	the	Heroku	Toolbelt	CLI	tool	to	create	a	new	Heroku	project,	e.g.

heroku	create

and	then	push	the	local	Git	repo	to	Heroku,	e.g.

git	push	heroku	master

Heroku	will	create	the	new	app	and	push	it	to	a	hosted	instance	online.	It	will	also	return	the	URL	for	this	new	app,
which	we	can	then	view	with	the	following	command,

heroku	open

or	by	simply	entering	the	project's	hosted	URL	in	a	browser.

use	Heroku	CLI	with	multiple	accounts

By	default,	Heroku's	Toolbelt	CLI	tool	does	not	support	multiple	accounts	for	a	local	machine.	However,	there	is	a
supported	plugin,	 heroku-accounts ,	which	adds	this	functionality.

We	can	install	it	using	the	following	command,

heroku	plugins:install	heroku-accounts

This	will	add	the	accounts	plugin	to	the	currently	install	Heroku	Toolbelt	CLI	tool.

Then,	we	can	add	some	accounts	to	allow	us	to	switch	account	as	needed	for	a	local	project.	e.g.

heroku	accounts:add	personal

The	Heroku	tool	will	then	request	account	credentials	for	the	Heroku	account	to	link,	e.g.	username	and	password.

To	switch	to	this	account,	we	may	use	the	following	command

heroku	accounts:set	personal

To	check	accounts	for	the	current	machine,	we	may	use	the	following	command

heroku	accounts

To	check	for	the	currently	active	account,

heroku	accounts:current

rename	heroku	app	from	cli

We	can	rename	and	update	a	heroku	app	using	the	CLI	toolbelt,	again	in	the	root	directory	of	the	enclosing	git
repository

heroku	apps:rename	new_name	--app	current_name

This	will	update	the	name	locally,	and	on	the	Heroku	servers.	It	will	also	update	the	git	repository	name	for	heroku
push	commands.

