
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

An	Introduction	to	Node.js	and	Express
A	brief	introduction	to	Node.js,	and	the	Express	web	framework.

Contents

Intro	and	outline
Initial	Node.js	and	Express	usage
Server.js

Static	files	and	routes

Test	app	-	working	with	JSON
Get	JSON	route
Post	route
Post	data	to	the	server

References

Intro	and	outline

We	can	use	Node.js	and	the	Express	web	application	framework	to	create	a	HTTP	based	application.

Initial	Node.js	and	Express	usage

We	can	use	Express	to	start	building	our	initial	basic	application.	Express	creates	a	shell	for	our	application	with	the
following	command,

express	nodetest

This	command	makes	a	new	directory	in	the	current	working	directory,	and	populates	it	with	the	required	basic	web
application	directories	and	files.	We	can	then	 cd 	to	this	directory	and	install	any	required	dependencies,

npm	install

We	can	then	run	our	new	app,

npm	start

or	use	'Nodemon'	to	constantly	monitor	and	update	our	app.

nodemon	start

We've	now	tested	npm,	and	we've	installed	our	first	module	with	Express.	Let's	now	test	Express,	and	build	our	first,
simple	server.	We'll	be	working	within	a	newly	created	test	directory,	for	example

|-	.
			|-	nodetest
						|-	node_modules

The	first	thing	we	need	to	do	is	create	a	JS	file	to	store	our	server	code,	so	we'll	add	 server.js



|-	.
			|-	nodetest
						|-	node_modules
						|-	server.js

We	can	then	start	adding	our	Node.js	code	to	create	a	simple	server.

server.js

We	can	now	add	some	initial	code	to	get	our	server	up	and	running.

/*	a	simple	Express	server	for	Node.js*/
var	express	=	require("express"),
				http	=	require("http"),
				appTest;

//	create	our	server	-	listen	on	port	3030
appTest	=	express();
http.createServer(appTest).listen(3030);

//	set	up	routes
appTest.get("/test",	function(req,	res)	{
		res.send("welcome	to	the	424	test	app.");
});

Then	start	and	test	this	server	as	follows	at	the	command	line,

node	server.js

We	can	open	this	initial	test	server	in	our	web	browser	using	the	following	URL,

http://localhost:3030

This	is	the	route	of	our	new	server.	However,	to	get	our	newly	created	route,	we	can	use	the	following	URL,

http://localhost:3030/test

This	will	now	return	our	specified	route,	and	output	message.	We	can	update	our	 server.js 	file	to	support	root
directory	level	routes.	We	need	to	add	the	following	to	our	server	code,

appTest.get("/",	function(req,	res)	{
		res.send("Welcome	to	the	424	server.")
});

We	can	now	load	our	server	at	the	root	URL,

http://localhost:3030

We	can	also	stop	our	server	from	the	command	line	with	a	key	combination	of	 CTRL 	and	 c .

Static	files	and	routes

At	the	moment,	our	initial	Express	server	is	helping	us	manage	some	static	routes	for	loading	content.	In	effect,	we
simply	tell	the	server	how	to	react	when	a	given	route	is	requested.

However,	what	if	we	now	want	to	serve	some	HTML	pages.	Thankfully,	Express	allows	us	to	set	up	routes	for	static
files.



//set	up	static	file	directory	-	default	route	for	server
appTest.use(express.static(__dirname	+	"/app"));

In	essence,	we	are	now	defining	Express	as	a	static	file	server,	thereby	enabling	us	to	publish	our	HTML,	CSS,	and	JS
files	and	code	from	our	default	directory,	 /app .

So,	if	we	add	a	new	 index.html 	file	to	this	directory,	and	then	load	our	server	at	 http://localhost:3030/ 	our
server	will	try	to	load	the	default	 index.html 	file	from	the	 /app 	directory.

If	the	requested	file,	default	or	explicit,	is	not	available	at	the	specified	default	route,	the	server	will	then	check	other
available	routes.	Then,	if	nothing	is	still	found,	it	will	simply	fail	and	report	to	the	browser.

For	example,

Test	app	-	working	with	JSON

We	can	now	work	our	way	through	a	basic	Node.js	app.	It	will	serve	our	JSON,	and	then	we	can	read	and	load	them
from	a	standard	web	app.

Let's	start	with	a	new	app	directory,	and	setup	Node.js	and	our	files.	We	can	use	a	sample	directory	structure	as
follows,

|-	.
			|-	node-test-json
						|-	node_modules
						|-	server.js

Within	our	app	directory,	we're	going	to	update	our	earlier	 server.js 	file	to	allow	us	to	serve	a	route	for	JSON.	We
can	then	use	this	to	read	our	content	for	publication.

So,	our	test	 server.js 	is	as	follows

var	express	=	require('express'),
				http	=	require("http"),
				jsonApp	=	express(),
				notes	=	{
						"travelNotes":	[{
						"created":	"2015-10-12T00:00:00Z",



						"note":	"Curral	das	Freiras..."
						}]
				};

jsonApp.use(express.static(__dirname	+	"/app"));

http.createServer(jsonApp).listen(3030);

//json	route
jsonApp.get("notes.json",	function(req,	res)	{
		res.json(notes);
});

We're	not	doing	much	at	the	moment,	but	we	can	still	load	the	app	in	the	browser,	and	it	will	serve	the	files	from	the	
/app 	directory.	For	example,	our	 index.html 	file.

For	example,

Get	JSON	route

We	now	have	our	 get 	routes	setup	for	JSON.	So,	we	need	to	add	some	client-side	logic	to	read	that	route,	and
render	to	the	browser.	We'll	simply	use	a	deferred	pattern,	a	Promise	object,	for	reading	this	exposed	route	thanks	to
jQuery's	 .getJSON() 	function,

...
		$.getJSON("notes.json",	function	(response)	{
				console.log("response	=	"+response.toSource());
				buildNote(response);
		})
...

With	the	response	object	from	our	JSON,	this	time	from	the	server	and	not	a	file	or	API,	we	can	use	our	familiar	helper
functions	to	create	and	render	each	note.	So,	with	the	response	object	we	can	then	call	a	helper	function	for	our
custom	app.

For	example,



Post	route

So	far,	we've	seen	examples	that	load	JSON	data.	We've	been	using	jQuery's	 .getJSON 	function	as	a	way	to	return
our	data,	and	then	insert	it	in	the	DOM	of	our	application.

However,	we	can	now	consider	jQuery's	reciprocal	function	to	allow	us	to	easily	send	JSON	data	to	the	server.

This	update	process,	whereby	we	send	JSON	data	to	the	server	over	a	HTTP	protocol,	is	simply	called	 post .

As	you	might	imagine,	we	begin	our	updates	by	creating	a	new	route	in	our	Express	server.	One	that	will	handle	the	
post 	route.

jsonApp.post("/notes",	function(req,	res)	{
		//return	simple	JSON	object
		res.json({
				"message":	"post	complete	to	server"
		});
});

Whilst	this	may	look	similar	to	our	earlier	 get 	routes,	there	is	a	subtle	difference.	This	is	inherently	due	to	browser
restrictions.	In	effect,	we	can't	simply	request	the	direct	route	using	our	browser,	as	we	did	with	the	 get 	routes.

Instead,	we	have	to	change	the	JS	we	use	for	the	client-side	to	post	to	this	new	route,	which	then	enables	us	to	view
the	returned	message.	So,	let	us	update	our	test	app	to	store	data	on	the	server,	and	then	initialise	our	client	with	this
stored	data.

We	can	start	with	a	simple	check	that	the	post	route	is	working	correctly.	We	can	add	a	button,	and	submit	a	request
to	the	post	route,	and	then	wait	for	the	response.	For	example,	we'll	add	the	following	event	handler	for	a	button,

$("#post").on("click",	function()	{
		$.post("notes",	{},	function	(response)	{
				console.log("server	post	response	returned..."	+	response.toSource());
		})
});

When	we	submit	a	 post 	request,	we	specify	the	route	for	the	post,	then	the	data	as	an	object,	and	then	a	callback	for
the	server's	response.	This	will	then	return	the	following	output	to	the	browser's	console,

server	post	response	returned...({message:"post	complete	to	server"})

This	simply	returns	the	specified	post	JSON	in	the	Node.js	server	file.

Post	data	to	the	server

We	can	now	send	some	data	to	the	server,	basically	populating	our	object.	We	need	to	update	the	server	to	handle



this	incoming	object,	in	effect	making	it	usable	within	our	application.

What	we	need	to	do	is	process	the	submitted	jQuery	JSON	into	a	JavaScript	object	that	the	server	can	use	for
processing	and	storing.	Thankfully,	we	can	use	the	Express	module's	 body-parser 	plugin.

So,	we	can	update	our	 server.js 	as	follows,

//add	body-parser	for	JSON	parsing	etc...
var	bodyParser	=	require("body-parser");
...
//Express	will	parse	incoming	JSON	objects
jsonApp.use(bodyParser.urlencoded({	extended:	false	}));
...

Effectively,	as	the	server	receives	a	JSON	object,	it	will	now	parse,	or	process,	this	object	to	ensure	that	it	can	be
stored	on	the	server.

We	can	now	update	our	test	button's	event	handler	to	send	a	new	note	as	a	JSON	object.	This	note	will	retrieve	its
new	content	from	the	input	field,	and	then	get	the	current	time	from	the	node	server.

$(".note-input	button").on("click",	function()	{
		//get	values	for	new	note
		var	note_text	=	$(".note-input	input").val();
		var	created	=	new	Date();
		//create	new	note
		var	newNote	=	{"created":created,	"note":note_text};
		//post	new	note	to	server
		$.post("notes",	newNote,	function	(response)	{
				console.log("server	post	response	returned..."	+	response.toSource());
		})
});

As	we	post	new	notes	to	the	server,	they	will	now	be	stored	on	the	server	whilst	it	remains	live.

So,	our	server	will	now	post	new	notes	to	the	server,	store	them,	and	then	get	them	for	rendering.	It	will	persist	our
notes	until	the	server	is	restarted.	This	is	a	step	forward	for	our	test	apps,	but	we	still	need	a	way	to	persist	the	data
beyond	the	uptime	of	the	server.

For	example,

and,



References

Express
Express	web	framework
API	Reference

Node.js
Node.js	home
Node.js	-	download
ExpressJS
ExpressJS	body-parser

http://expressjs.com/
http://expressjs.com/en/4x/api.html
https://nodejs.org/en/
https://nodejs.org/en/download/
http://expressjs.com/
https://github.com/expressjs/body-parser

