
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

Node.js	and	MongoDB
A	brief	introduction	to	using	MongoDB	with	Node.js	and	Mongoose.

Contents

Intro
SQL	or	NoSQL
MongoDB

Document	oriented
BSON	format
Data	hierarchy

Test	app	-	working	with	MongoDB
Mongoose	schema
Connect	to	MongoDB
Update	 post 	route
Update	 get 	route

References

Intro

We've	tested	Node.js,	created	a	server	for	hosting	our	files	and	routes	with	ExpressJS,	read	JSON	from	the	server,
and	updated	our	JSON	on	the	server-side.

This	works	well	assuming	we	don't	need	to	restart,	repair,	or	update	our	server.	If	we	do,	we	lose	the	updates	posted
to	the	server	and	will,	instead,	return	to	the	default	data	stored.

To	help	us	solve	this	obvious	issue,	we'll	need	to	consider	persistent	data	storage	that	runs	independently	from	our
application.	We'll	look	at	MongoDB,	and	how	we	can	integrate	this	NoSQL	data	store	option	with	our	Node.js
applications.

SQL	or	NoSQL

When	we	think	of	databases,	we	have	often	thought	solely	in	terms	of	SQL,	or	structured	query	language.	It	is	a
language	used	to	query	data	in	a	relational	format.	Such	relational	databases,	for	example	MySQL	or	PostgreSQL,
store	their	data	in	tables,	which	then	provide	a	semblance	of	structure	through	rows	and	cells.	We	can	then	easily
cross-reference,	or	relate,	these	table	rows	with	rows	in	other	tables.

So,	we	might	use	this	relational	structure	to	map	authors	to	books,	players	to	teams,	and	so	on.	One	of	the	primary
benefits	of	using	a	relational	database	is	this	inherent	ability	to	store	information,	thereby	dramatically	reducing
redundancy,	and	hopefully	required	storage	space	as	well.

As	storage	restrictions	have	continued	to	ease	in	recent	years,	we	now	see	a	shift	in	thinking,	and	database	design	in
general.	We've	started	to	see	the	introduction	of	non-relational	databases,	often	referred	to	simply	as	NoSQL.	With
this	type	of	database,	redundant	data	may	be	stored,	but	such	designs	often	provide	increased	ease	of	use	for
developers.	Some	of	these	databases	and	stores	have	also	been	written	with	specific	use-cases	in	mind,	for	example
providing	more	efficient	reading	of	data	compared	to	writing.	In	effect,	highly	efficient	data	storage	for	specialised
environments	and	scenarios.



MongoDB

MongoDB	is	a	NoSQL	database	that	enables	us	to	store	our	data	on	disk,	but	unlike	MySQL,	for	example,	it	is	not	in	a
relational	format.

MongoDB	is	best	characterised	as	a	document-oriented	database,	which	conceptually	may	be	considered	as	storing
objects	in	collections.	It	stores	its	data	using	the	BSON	format,	which	we'll	look	at	in	a	moment,	but	ostensibly	for	our
purpose	we	can	consider	this	as	comparable	to	JSON.	The	best	part	is	that	we	can	easily	interact	with	MongoDB
using	JavaScript.

We'll	have	a	look	at	some	of	the	basics	of	MongoDB,	then	we'll	install	and	set	it	up,	and	then	work	our	way	through	an
example	with	Node.js	and	Mongoose.

Document	oriented

In	a	traditional	SQL	database,	data	is	stored	in	tables	and	rows.	MongoDB,	by	contrast,	uses	collections	and
documents.

A	document	may	contain	a	lot	more	data	than	a	table.	For	example,	in	a	SQL	database	we	may	decide	to	store	user
details,
including	 user_id ,	 email ,	 name 	and	so	on,	in	multiple	tables.	We	then	join	these	tables	to	create	a	user	record.
However,	with	documents	we	simply	store	the	data,	id,	email	etc,	and	this	will	now	be	the	only	item	in	the	database	to
store	this	grouping	of	data.

A	noted	concern	with	this	document	approach	is	duplication	of	data	for	each	user.	This,	however,	is	one	of	the	trade-
offs	between	NoSQL	(MongoDB)	and	SQL.

In	SQL,	the	goal	of	data	structuring	is	to	normalise	as	much	as	possible,	thereby	avoiding	duplicated	information.	With
MongoDB,	there	is	a	notably	different	goal.	We	are	trying	to	provision	a	data	store	which	is	as	easy	as	possible	for	the
application	to	use,	and	by	association	the	developer.

BSON	format

BSON	is	the	format	used	by	MongoDB	to	store	its	data.	It	is,	effectively,	JSON	stored	as	binary	with	a	few	notable
differences.	One	of	these	differences	is	the	 ObjectId 	value,	which	is	a	data	type	used	in	MongoDB	to	uniquely
identify	documents.	It	is	created	automatically	on	each	document	in	the	database,	and	can	be	considered	as
analogous	to	a	primary	key	in	a	SQL	database.

The	 ObjectId 	is	a	large	pseudo-random	number.	For	nearly	all	practical	occurrences,	we	can	assume	that	this
number	will	be	unique.	The	only	situation	where	we	might	have	a	collision	or	clash	in	these	numbers	is	if	we	were
generating	a	large	number	and	the	database	was	unable	to	keep	pace.	Therefore,	for	most	use	cases,	we	may
assume	they're	always	unique.

The	other	interesting	aspect	of	 ObjectId 	is	that	they	are	partially	based	on	a	timestamp.	This	allows	us	to	determine
when	they	were	created.

Data	hierarchy

In	general,	MongoDB	has	three	tiers	to	its	hierarchy	of	data.	These	include,

Database	-	normally	one	database	per	app,	but	it	is	possible	to	have	multiple	per	server.	It	functions	the	same
basic	role	as	a	database	in	SQL.
Collection	-	a	grouping	of	similar	pieces	of	data.	So,	MongoDB	stores	its	documents	in	collections.	Its	name	is
usually	a	noun,	and	it	resembles	in	concept	a	table	in	SQL.	However,	collections	do	not	require	their	documents
to	share	the	same	schema.
Document	-	a	single	item	in	the	database,	for	example	an	individual	user	record.	A	document	is	a	data	structure
that	uses	field	and	value	pairs,	and	is	similar	in	nature	to	JSON	objects.



Install	and	setup

let's	now	install	and	setup	MongoDB.

install	on	Linux
install	on	Mac	OS	X

we	can	use	homebrew	to	install	Mong

//	update	brew	packages
brew	update
//	install	MongoDB
brew	install	mongodb

then	follow	the	install	instructions	on	the	above	page	to	set	paths...
install	on	Windows

Example	shell	commands

Then	test	MongoDB	from	the	command	line.

//	first	start	MongoDB	server	-	terminal	window	1
mongod
//	connect	to	MongoDB	-	terminal	window	2
mongo

switch	to	or	create	a	new	DB,	if	not	available,	as	follows

//	list	available	dbs
show	dbs
//	switch	to	specified	db
use	testdb1
//	show	current	db
db
//	drop	current	db
db.dropDatabase();

However,	whilst	you'll	be	switched	to	this	new	DB,	it	will	not	be	created	permanently	until	you	create	and	insert	a
record	in	that	database.	In	effect,	we	don't	just	create	empty	DBs,	save	and	then	populate	later.	We	create	the	DB,
populate,	and	then	MongoDB	will	save	it	because	it	now	has	something	to	save.	The	only	permanent	DB	is	the	default	
test 	DB.

Let's	now	add	an	initial	record	to	a	new	 testdb1 	database.

//	select/create	db
use	testdb1
//	insert	data	to	collection	in	current	db
db.notes.insert({
...			"travelNotes":	[{
...			"created":	"2015-10-12T00:00:00Z",
...			"note":	"Curral	das	Freiras..."
...			}]
...	})

our	new	DB	 testdb1 	will	now	be	saved	in	Mongo
we've	created	a	new	collection,	 notes

//	show	databases
show	dbs
//	show	collections
show	collections

https://docs.mongodb.org/manual/administration/install-on-linux/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/


Test	app	-	working	with	MongoDB

We	can	now	create	a	new	test	app	for	use	with	MongoDB.	(see	notes	-	nodejs-outline	&	nodejs-express-outline)

To	connect	to	MongoDB,	and	create	a	schema	for	working	with	our	basic	DB,	we'll	add	Mongoose	to	the	application.

So,	we'll	update	our	 package.json 	for	the	app,	and	install	Mongoose	using	npm.

//	add	mongoose	to	app	and	save	dependency	to	package.json
npm	install	mongoose	--save

Then	we	can	quickly	test	our	app	and	server	with	the	usual	startup	command	in	the	app's	working	directory,

node	server.js

Mongoose	schema

To	help	us	work	with	Node.js	and	MongoDB,	we're	going	to	use	Mongoose	as	a	type	of	bridge	between	these	two
technologies.	In	effect,	this	Node.js	module	serves	two	useful	purposes.	In	a	similar	manner	to	node-redis,	Mongoose
works	as	a	client	from	our	Node.js	application	to	MongoDB.	It	also	serves	as	a	useful	data	modeling	tool,	allowing	us
to	represent	our	documents	as	objects	in	the	application.

So,	for	our	purposes,	what	is	a	data	model.	In	essence,	we	can	simply	consider	it	as	an	object	representation	of	a
document	collection	within	our	given	data	store.	It	helps	us	specify	required	fields	for	each	collection's	document.

A	data	model	in	Mongoose	is	a	schema,	which	we	use	to	describe	the	underlying	structure	for	all	objects	of	a	given
type.	So,	for	our	notes,	we	can	create	a	data	model	for	a	collection	of	notes.	We	can	start	by	specifying	the	schema	for
a	note,

var	NoteSchema	=	mongoose.Schema({
		"created":	Date,
		"note":	String
});

After	creating	our	schema,	we	can	programmatically	build	a	model.	As	a	convention,	we	tend	to	use	an	initial
uppercase	letter	for	the	name	of	a	data	model	object,

var	Note	=	mongoose.model("Note",	NoteSchema);

With	our	new	model,	we	can	start	creating	objects	of	this	model	type	simply	by	using	JavaScript's	 new 	operator.	For
example,	if	we	wanted	to	add	a	new	note,

var	funchalNote	=	new	Note({
"created":	"2015-10-12T00:00:00Z",
"note":	"Curral	das	Freiras..."
});

We	can	then	use	the	Mongoose	object	to	interact	with	the	MongoDB	using	functions	such	as	 save 	and	 find .

Connect	to	MongoDB

With	our	new	DB	setup,	our	schema	created,	we	can	now	start	to	add	notes	to	our	database	in	MongoDB.

In	our	 server.js 	file,	we	need	to	connect	Mongoose	to	our	DB	in	MongoDB.	Then,	we	define	our	schema	for	our
notes.	This	allows	us	to	then	model	a	note,	which	we	can	use	to	create	each	note	for	saving	to	the	database.

...



//connect	to	testdb1	DB	in	MongoDB
mongoose.connect('mongodb://localhost/testdb1');
//define	Mongoose	schema	for	notes
var	NoteSchema	=	mongoose.Schema({
		"created":	Date,
		"note":	String
});
//model	note
var	Note	=	mongoose.model("Note",	NoteSchema);

Update	 post 	route

We	can	then	update	our	app's	 post 	route	for	saving	these	notes,

//json	post	route	-	update	for	MongoDB
jsonApp.post("/notes",	function(req,	res)	{
		var	newNote	=	new	Note({
				"created":req.body.created,
				"note":req.body.note
		});
		newNote.save(function	(error,	result)	{
				if	(error	!==	null)	{
						console.log(error);
						res.send("error	reported");
				}	else	{
						Note.find({},	function	(error,	result)	{
								res.json(result);
						})
				}
		});
});

Update	 get 	route

Then	we	need	to	update	our	app's	 get 	route	for	serving	these	notes,

//json	get	route	-	update	for	mongo
jsonApp.get("/notes.json",	function(req,	res)	{
		Note.find({},	function	(error,	notes)	{
			//add	some	error	checking...
			res.json(notes);
		});
});

So,	with	our	test	app,

now	able	to	enter,	save,	read	notes	for	app
notes	data	is	stored	in	the	test	database	in	MongoDB
notes	are	loaded	from	DB	on	page	load
notes	are	updated	from	DB	for	each	new	note	addition
DEMO	-	424-node-mongo1

![Node	and	MongoDB	-	424-node-mongo1](2016/fall/media/images/node-mongo1.png)

References

MongoDB
MongoDB	-	For	Giant	Ideas
MongoDB	-	Getting	Started	(Node.js	driver	edition)

https://github.com/csteach424/source/tree/master/2016/fall/week12/424-node-mongo1
https://www.mongodb.org/
https://docs.mongodb.org/getting-started/node/


MongoDB	-	Getting	Started	(shell	edition)

Mongoose
MongooseJS	Docs

Node.js
Node.js	home
Node.js	-	download
ExpressJS
ExpressJS	body-parser

https://docs.mongodb.org/getting-started/shell/
http://mongoosejs.com/index.html
https://nodejs.org/en/
https://nodejs.org/en/download/
http://expressjs.com/
https://github.com/expressjs/body-parser

