
Extra	notes	-	Client-side	Design	and	Development
Dr	Nick	Hayward

An	Introduction	to	Node.js	and	NPM
A	brief	introduction	to	Node.js,	including	initial	setup	and	package	management	with	NPM.

Contents

Intro	and	outline
Conceptual	model	for	processing
Event-driven	architecture
Callbacks

Install	and	setup
NPM

Find	modules	with	NPM
Specifying	dependencies
Package	JSON	file	(package.json)

References

Intro	and	outline

Node.js	is,	in	essence,	a	JavaScript	runtime	environment	designed	to	be	run	outside	of	the	browser.

It	has	been	designed	as	a	general	purpose	utility,	and	can	be	used	for	many	different	tasks	including,

asset	compilation
monitoring
scripting
web	servers

With	Node.js,	we	now	see	JavaScript	moving	from	client-side	to	a	support	role	in	back-end	development.

One	of	the	key	advantages	touted	for	Node.js	is	its	speed.	A	primary	reason	for	this	speed	boost	is	its	underlying
architecture.	It	uses	an	event-based	architecture	instead	of	a	threading	model	popular	in	compiled	languages.	So,
Node.js	uses	a	single	event	thread	by	default,	and	all	I/O	is	asynchronous.

Conceptual	model	for	processing

In	essence,	how	does	Node.js,	and	its	underlying	processing	model,	actually	work.

The	client	sends	a	hypertext	transfer	protocol,	HTTP,	request,	or	customarily	requests,	to	the	Node.js	server.	The
event	loop	is	then	informed	by	the	host	OS,	which	passes	applicable	request	and	response	objects	as	JavaScript
closures	to	associated	worker	functions	with	callbacks.	Any	long	running	jobs	continue	to	run	on	various	assigned
worker	threads,	and	responses	are	sent	from	the	non-blocking	workers	back	to	the	main	event	loop	via	a	callback.	The
event	loop	returns	any	results	back	to	the	client,	effectively	when	they're	ready.

For	example,



Event-driven	architecture

JavaScript,	by	its	very	nature,	was	originally	designed	to	work	within	the	confines	of	the	web	browser.	It	had	to	handle
the	restrictive	nature	of	a	single	thread	and	single	process	for	the	whole	page.	Therefore,	synchronous	blocking	in
code	would	lock	up	a	web	page	from	all	actions.	JavaScript	was	built	with	this	in	mind.

Due	to	this	style	of	I/O	handling,	Node.js	is	able	to	handle	millions	of	concurrent	requests	on	a	single	process.	This
has	been	added,	using	libraries,	to	many	other	existing	languages,	including

Akka	for	Java
EventMachine	for	Ruby
Twisted	for	Python
...

but	JavaScript	syntax	already	assumes	events	through	its	use	of	callbacks.	However,	as	a	note	of	caution,	if	a	query
etc	is	CPU	intensive	instead	of	I/O	intensive,	the	thread	will	be	tied	up	and	everything	will	be	blocked	as	it	waits	for	it	to
finish.

Callbacks

In	most	languages,	you	send	an	I/O	query	and	wait	until	a	result	is	returned	before	you	can	continue	your	code
procedure.	For	example,	if	you	submit	a	query	to	a	database	for	a	user	ID,	the	server	will	pause	that	thread/process
until	the	database	returns	a	result	for	the	ID	query.

In	Javascript,	this	concept	is	rarely	implemented.	Instead,	it	is	more	common	to	pass	the	I/O	call	a	callback.	This
callback	will	need	to	run	when	the	task	is	completed.	For	example,	find	a	user	ID	and	then	do	something,	such	as
output	to	a	HTML	element.

The	biggest	difference	in	these	approaches	is	that	whilst	the	database	is	fetching	the	user	ID	query,	our	app	is	free	to



do	whatever	else	might	be	useful.	We	might	accept	another	web	request,	listen	to	a	different	event,	and	so	on.	This	is
one	of	the	reasons	that	Node.js	returns	good	benchmarks	and	is	easily	scaled.

This	makes	Node.js	well	suited	for	I/O	heavy	and	intensive	scenarios,	including	web	development.

Install	and	setup

There	are	a	number	of	different	ways	to	install	Node.js,	npm,	and	the	lightweight,	customisable	web	framework
Express.

To	run	and	test	Node.js	on	a	local	Mac	OS	X,	Linux,	or	Windows	machine,	simply	download	and	install	a	package
from	the	following	URL,

Node.js	-	download

Node.js	package	manager,	npm,	is	included	with	the	default	installers	available	at	the	Node.js	website.

We	can	check	it	has	been	installed	successfully	with	the	following	terminal	commands,

node	-v
npm	-v

Each	of	these	commands	will	return	the	version	number	for	their	respective	install.

NPM

To	install	existing	npm	modules,	use	the	following	type	of	command

npm	install	express

This	will	install	the	module	named	 express 	in	the	current	directory.	It	will	act	as	a	local	installation	within	the	current
directory,	installing	in	a	folder	called	 node_modules .	This	is	the	default	behaviour	for	current	installs.

We	can	also	specify	a	global	install	for	modules.	For	example,	we	may	wish	to	install	the	express	module	with	global
scope

npm	install	-g	express

The	 -g 	option	sets	a	flag	for	Express	to	global	instead	of	a	limited	local	directory	install.

We	can	then	import,	or	effectively	add,	installed	modules	in	our	Node.js	code	using	the	following	declaration	as	an
example,

var	module	=	require('express');

When	we	run	this	application,	it	will	look	for	the	required	module	library	and	its	source	code.

Find	modules	with	NPM

The	official	online	search	tool	for	npm	can	be	found	at

npmjs

Top	packages	include	options	such	as

browserify	(helps	us	bundle	require	modules	in	the	browser...)
express	(a	lightweight	web	application	framework	for	Node.js)
grunt	(a	task	runner	to	help	with	automation	of	various	development	processes...)

https://nodejs.org/en/download/
https://www.npmjs.com/


bower	(a	package	manager	for	web	development...)
karma	(a	JS	test	runner...)

and	many	more...

We	can	also	search	for	modules	directly	from	the	command	line	using	the	following	command,

npm	search	express

This	will	return	results	for	module	names	and	descriptions	matching	express.

Specifying	dependencies

For	Node.js	applications,	we	can	ease	their	installation	by	specifying	any	required	dependencies	in	an	associated	
package.json 	file.	This	allows	us,	as	developers,	to	simply	specify	the	modules	to	install	for	our	application,	which
can	then	be	run	using	the	following	command

npm	install

This	helps	reduce	the	need	to	install	each	module	individually,	and	helps	other	users	install	an	application	as	quickly
as	possible.	Also,	our	application's	dependencies	are	stored	in	one	place.

Package	JSON	file

An	example	 package.json 	file	might	be	as	follows,

{
		"name":	"app",
		"version":	"0.0.1",
		"dependencies":	{
				"express":	"4.2.x",
				"underscore":	"-1.2.1"
		}
}

The	 package.json 	file	helps	us	manage	and	track	dependencies	within	our	app.	It	also	helps	us	track	other	aspects
of	our	application,	including	name,	description,	version,	and	so	on.

An	example	 package.json 	file	might	be	as	follows

{
		"name":	"test-node-app",
		"version":	"1.0.0",
		"description":	"test	app	for	nodejs",
		"main":	"server.js",
		"dependencies":	{
				"body-parser":	"^1.14.1",
				"express":	"^4.13.3",
				"redis":	"^2.3.0"
		},
		"author":	"ancientlives",
		"license":	"ISC"
}

We	could	create	 package.json 	by	hand	or	use	the	following	command	to	walkthrough	various	options

npm	init

This	creates	a	 package.json 	file	for	us,	and	then	we	can	add	any	required	dependencies	as	follows,



npm	install	redis	--save

This	will	update	our	 package.json 	file	for	the	installed	package.

References

Node.js
Node.js	home
Node.js	-	download

https://nodejs.org/en/
https://nodejs.org/en/download/

