
Extra	Notes	-	Node.js	&	Web	Sockets
Dr	Nick	Hayward

Node.js	&	Socket.io

A	collection	of	notes	on	Node.js	and	Socket.io.

Contents

Intro
v0.1	-	project	setup

initial	structure
server	setup
static	files
add	Heroku	config
modify	package.json
add	.gitignore
add	Heroku	hosting

v0.2	-	add	socket.io
server	and	socket.io.js	library
socket	communication
listen	for	events	-	default	server	event
listen	for	events	-	default	client	event

v0.3	-	listening	and	emitting	custom	events
new	note	from	server	to	client
new	note	from	client	to	server

v0.4	-	broadcasting
event	broadcasting
customise	event	emits

v0.5	-	abstract	utilities
socket	message	creation

v0.6	-	events	&	acknowledgements
return	data	in	acknowledgement

v0.7	-	client	forms	and	DOM	output
jQuery	and	HTML5
render	messages	to	UI	-	note	creation
render	messages	to	UI	-	users

v0.8	-	update	UX	for	client
clear	input	field
add	focus	to	the	input	field

v0.8.1	-	add	timestamps	for	notes	&c.
Moment.js	usage	-	server-side
Moment.js	usage	-	client-side	rendering

intro

This	app	uses	Node.js,	Express,	Socket.io	&c.	to	create	an	example	messaging	app,	which	showcases	usage	of
Socket.io.

Heroku	app	URL,

https://spire-sockets.herokuapp.com/

v0.1	-	project	setup

Initial	project	setup	is	as	follows,

create	project	directory	&	cd

mkdir	node-socket-io
cd	node-socket-io

initialise	a	new	Node.js	based	project

npm	init

and	answer	the	basic	questions	in	the	terminal.

initialise	a	new	Git	repository	for	the	project

git	init

install	Express	using	NPM

npm	i	express	--save

v0.1	-	initial	structure

We	can	start	our	app	with	the	following	structure,

|--	node-express-starter
				|__	.git
				|__	node_modules
				|__	package.json
				|__	public
								|__	index.html
				|__	server
								|__	server.js

server 	directory	for	the	Express	based	server	logic,	and	 public 	for	the	initial	static	files.

v0.1	-	server	setup

Add	initial	 server.js 	file	and	logic,	e.g.

//	require	node	module	'path'	-	built-in	module
const	path	=	require('path');
//	require	express	module
const	express	=	require('express');

//	define	path	to	static	dir	public
const	publicDir	=	path.join(__dirname,	'../public');
//	define	variable	to	call	express	methods
var	app	=	express();

//	configure	express	static	middleware
app.use(express.static(publicDir));

//	start	server	on	port	3030	-	add	callback	function
app.listen(3030,	()	=>	{
		console.log('server	running	on	port	3030');
});

v0.1	-	static	files

This	basic	server	will	allow	us	to	server	static	files	from	the	 public 	directory,	e.g.	a	starter	 index.html 	file

<!DOCTYPE	html>
<html>
		<head>
				<meta	charset="utf-8">
				<title>websockets	starter</title>
		</head>
		<body>
				<h3>WebSockets	Starter</h3>
		</body>
</html>

Then,	we	can	start	and	test	the	new	server

node	server/server.js

which	will	be	available	at	the	specified	port,	e.g.	https://localhost:3030

v0.1	-	add	Heroku	config

Update	 server.js 	to	define	port	for	local	and	remote

const	port	=	process.env.PORT	||	3030;

and	modify	server	to	use	this	path

app.listen(port,	()	=>	{
		console.log(`server	running	on	port	${port}`);
});

v0.1	-	modify	package.json

Add	a	script	call	for	startup	and	minimum	Node.js	version	for	Heroku,	e.g.

...
"scripts":	{
		"start":	"node	server/server.js",
		"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"
},
"engines":	{
		"node":	"9.2.1"
},
...

v0.1	-	add	.gitignore

Add	a	 .gitignore 	file	to	the	project	root,	e.g.

node_modules/

Then,	push	project	to	GitHub	if	applicable.

v0.1	-	add	Heroku	hosting

Create	new	Heroku	project	in	root	of	app

heroku	create

and	then	push	the	local	Git	repo	to	Heroku,	e.g.

git	push	heroku	master

Then	open	hosted	app	for	testing,

heroku	open

Rename	the	project,	if	necessary,	as	follows

heroku	apps:rename	new_name	--app	current_name

v0.2	-	add	socket.io

Update	server	to	work	with	web	sockets.	The	server	needs	to	accept	these	socket	connections,	whilst	the	client	makes
them.

Install	Socket.io,

npm	i	socket.io	--save

and	then	add	require	to	 server.js

const	socketIO	=	require('socket.io');

Then,	integrate	sockets	with	the	server.

modify	server	to	work	with	sockets

Express	relies	on	the	HTTP	module.	However,	by	default	this	usage	is	implicit	as	part	of	the	basic	usage	of	Express.

For	socket.io,	we	need	to	make	this	HTTP	module	usage	explicit,	which	then	allows	us	to	integrate	sockets	in	to	the
server.	This	module	is	available	by	default	(i.e.	no	extra	NPM	install),	but	it	still	needs	to	be	explicitly	required

e.g.

const	http	=	require('http');

Then,	we	create	an	explicit	server	using	this	module,	e.g.

var	server	=	http.createServer

n.b.	when	we	call	 app.listen() ,	this	implicitly	calls	the	 createServer 	method	passing	 app 	as	the	argument	for
server.

However,	when	we	explicitly	call	 createServer 	we	need	to	pass	a	function	with	the	standard	 req 	and	 res
callbacks,	e.g.

var	server	=	http.createServer((req,	res)	=>	{
		...
});

However,	due	to	the	nature	of	the	integration	of	HTTP	and	Express,	we	can	simply	create	the	server	as	follows,	e.g.

var	server	=	http.createServer(app);

in	effect	passing	Express	as	the	argument	for	the	explicit	HTTP	server.	We	can	also	update	the	call	to	the	listen
method	as	well,	so	we	are	now	using	the	explicit	HTTP	server,	e.g.

server.listen(port,	()	=>	{
		console.log(`server	is	running	on	${port}`);
});

Then,	we	can	pass	the	server	to	socket.io,	e.g.

var	io	=	socketIO(server);

This	will	now	return	the	web	socket	server	in	this	variable	 io .	This	is	how	we	can	then	communicate	back	and	forth
between	the	server	and	client	using	web	sockets.

v2.0	-	server	and	socket.io.js	library

We're	now	ready	to	send	and	receive	web	socket	connections	between	the	server	and	client.

By	loading	this	server	with	socketIO,	we	now	have	access	to	the	 socket.io.js 	library	on	the	client-side,	e.g.

localhost:3030/socket.io/socket.io.js

In	effect,	the	server	provides	a	route	to	the	socket.io	library.	We	can	now	call	this	library	from	our	HTML	files,	e.g.	in
the	 index.html 	file	for	our	app

<script	src="/socket.io/socket.io.js"></script>

This	gives	us	access	to	the	socket.io	library's	methods	&c.	on	the	client-side.

We	can	start	by	creating	a	variable	to	hold	the	socket	connection	in	our	app,	which	we	need	for	communications	in	the
app.	From	the	client	to	the	server,	and	vice-versa.	e.g.

var	socket	=	io();

So,	we	now	have	a	live	communication	with	the	server.

v2.0	-	socket	communication

Communication	is	now	possible	in	the	form	of	an	event.	These	events	may	be	emitted	by	either	the	client	or	the
server,	and	either	may	then	listen	as	well.

Sockets	are	a	persistent	technology,	keeping	a	line	of	communication	open	as	long	as	both	parites,	client	and	server,
require.	So,	updates	are	executed	immediately.

test	events	-	users

A	couple	of	events	are	built-in	by	default,	which	help	demonstrate	the	concept	of	events	with	socket.io.	We	can	keep

track	of	new	users,	and	disconnected	users.	e.g.	we	might	create	a	new	user	as	they	join	the	app.

v2.0	-	listen	for	events	-	default	server	event

In	 server.js ,	we	need	to	add	a	listener	for	the	sockets.	We	can	then	listen	for	an	event,	e.g.

io.on('connection',	(socket)	=>	{
		console.log('new	user	connection...');
});

This	listens	for	a	connection	to	the	app,	and	then	executes	the	callback.	This	method	is	called	with	a	 socket ,	which
is	the	individual,	specific	socket	for	the	captured	event	in	the	listener.

Likewise,	we	can	also	listen	for	the	default	 disconnect 	event.	However,	as	a	socket	is	already	connected,	we	have
to	listen	for	that	specific	socket	disconnection,	e.g.

io.on('connection',	(socket)	=>	{
		console.log('new	user	connection...');

		socket.on('disconnect',	()	=>	{
				console.log('user	was	disconnected...');
		});
});

v2.0	-	listen	for	events	-	default	client	event

Likewise,	we	can	listen	and	respond	to	events	in	the	client.

In	 index.html ,	we	can	add	the	following	to	listen	for	a	socket	event

socket.on('connect',	()	=>	{
		console.log('connected	to	server...');
});

The	client	is	listening	for	a	successful	connection	to	the	server,	and	then	executing	the	defined	callback	function.

As	with	the	server,	we	can	also	listen	for	a	disconnect	event,

socket.on('disconnect',	()	=>	{
		console.log('disconnected	from	server...');
});

v3.0	-	listening	and	emitting	custom	events

Quick	refactor	of	code,

move	sockets	logic	into	separate	JS	file,	 /public/js/index.js ,	and	then	load	script	file	in	 index.html .

We	can	now	add	custom	events	for	a	new	note,	e.g.

emit	from	the	server	for	newly	created	note	-	listen	on	the	client	for	a	new	note

v3.0	-	listening	and	emitting	custom	events	-	new	note	from	server	to	client

For	a	custom	event,	we	define	an	event	name	for	use	with	a	socket,	e.g.

socket.on('newNote',	()	=>	{
		console.log('new	note');

});

which	we	can	add	to	the	 index.js 	file	for	the	client	logic	in	the	app.	This	is	the	event	listener	on	the	client-side	for	a
new	note	created	on	the	server.

So,	we	now	need	to	create	an	event	on	the	server	to	emit	a	new	note,	e.g.

socket.emit('newNote',	{
		text:	'...',
		createdAt:	'...'
});

The	data	emitted	as	part	of	this	custom	server	event	is	provided	as	the	first	part	of	the	argument	to	the	callback
function	on	the	client	for	this	event.

So,	we	can	update	the	client	to	be	able	to	use	this	data,	e.g.

socket.on('newNote',	(note)	=>	{
		console.log(`new	note	-	${note}`);
});

v3.0	-	listening	and	emitting	custom	events	-	new	note	from	client	to	server

For	this	custom	event,	we	need	to	create	a	listener	on	the	server,	and	an	emitter	on	the	client.

In	 server.js ,	we	can	add	a	listener	in	the	callback	for	 io.on() ,	e.g.

socket.on('createNote',	(newNote)	=>	{
		console.log(`createNote	from	client	-	${newNote}`);
});

Then,	we	create	an	emitter	for	a	new	note	on	the	client	side,	e.g.

//	emit	custom	event	for	new	created	note	-	listen	on	the	server
socket.emit('createNote',	{
		text:	'a	new	note	has	been	created	by	the	client...'
});

To	ensure	this	emit	event	is	only	executed	once	the	socket	is	connected,	we	might	initially	add	it	in	the	 connect
event	for	the	client.

v0.4	-	event	broadcasting

We	now	need	to	modify	server	and	client	to	enable	app-wide	broadcasts,	e.g.	from	multiple	clients,	tabs,	browsers	&c.

In	 server.js ,	we	add	a	new	emit	event	for	a	newly	created	note,	e.g.

socket.on('createNote',	(newNote)	=>	{
		console.log(`createNote	from	client	-	${newNote}`);
		io.emit('newNote',	{
				text:	newNote.text,
				createdAt:	currentDate
		})
});

By	adding	this	app-wide	emit	event,	we	can	then	remove	the	socket	specific	emit	events	for	a	new	note	from	both
server.js	and	index.js.	These	were	initially	added	simply	for	testing	events	with	sockets.	For	testing,	we	can	either	use
a	browsers	JS	console	or	add	a	UI	form	&c.	to	the	app.

e.g.	in	a	browser's	JS	console,	we	can	issue	the	following	test	command

socket.emit('createNote',	{text:	'a	new	test	note...'});

v0.4	-	customise	event	emits

With	the	current	server	emit	for	createNote,	the	event	message	is	returned	to	all	users,	including	the	original	user	who
created	the	new	note.

However,	it	may	only	be	necessary	to	broadcast	an	event	to	specific	users.	e.g.	a	message	sent	to	all	to	inform	them	a
new	note	has	been	created,	but	a	custom	message	to	the	original	user	to	inform	them	the	note	has	been	created	&c.

Another	example	might	include	when	a	new	user	has	joined	the	app.	All	users	might	receive	a	message	about	the	new
user,	and	the	new	user	receives	a	custom	welcome	message.

So,	we	need	to	use	a	different	option	for	emitting	events	from	the	server.

modify	emit	from	server	-	broadcasting

In	 server.js ,	we	can	add	a	specific	broadcast	call	from	the	current	socket,

socket.broadcast.emit('newNote',	{
		text:	newNote.text,
		createdAt:	currentDate
});

This	will	broadcast	the	new	note	&c.	to	all	connected	users,	except	for	the	user	that	connected	to	this	specific	socket.
i.e.	the	user	that	sent	the	createNote	event	from	the	client.

custom	events	for	users	-	join	and	connect	to	app

When	a	user	joins	the	app,	two	messages	will	now	be	sent	by	 server.js ,	e.g.

//	emit	message	to	specific	user	of	the	socket
socket.emit('userMessage',	{
		from:	'admin',
		text:	'welcome	to	the	notes	app...',
		createdAt:	currentDate
});
//	broadcast	message	to	all	remaining	users
socket.broadcast.emit('groupMessage',	{
		from:	'admin',
		text:	'a	new	user	has	joined	the	notes	app...',
		createdAt:	currentDate
});

A	user	message	is	broadcast	to	a	specific	user	each	time	they	join	the	app.	Then,	a	group	message	is	broadcast	to	all
connected	users	for	each	new	user	joining.

We	need	to	update	 index.js 	to	listen	for	a	user	and	group	message,	e.g.

//	listen	for	a	message	to	a	single	user	-	current	socket	connection
socket.on('userMessage',	(message)	=>	{
		console.log(message);
});
//	listen	for	a	broadcast	group	message	-	all	connected	users	except	originating	user	
(i.e.	new	user	joined...)
socket.on('groupMessage',	(message)	=>	{
		console.log(message);
});

v0.5	-	abstract	utilities	-	socket	message	creation

Define	a	function	to	abstract	creation	of	the	object	we	send	in	a	message	for	 socket.emit 	&c.

This	will	form	part	of	a	group	of	utilities	we	can	add	to	our	app	in	 /server/utils/messaging.js .

e.g.

var	currentDate	=	new	Date().getTime();
var	messageGenerator	=	(from,	text)	=>	{
		return	{
				from,
				text,
				createdAt:	currentDate
		}
};

Then,	we	can	export	this	method	e.g.

module.exports	=	{
		messageGenerator
};

for	use	in	 server.js 	&c.,	with	a	standard	 require 	call	to	the	file.

use	message	generator	in	 server.js

We	can	use	the	abstracted	message	generator	with	emit	calls,	e.g.

socket.emit('userMessage',	messageGenerator('admin',	'welcome	User	to	the	notes	
app...'));

v0.6	-	events	&	acknowledgements

Event	acknowledgements	are	a	built-in	feature	of	Socket.io,

For	new	notes,	we	have	the	following	event	flows

emit	event	on	server	->	listen	on	client	-	io.emit	newNote	back	to	client
emit	event	on	client	->	listen	on	server	-	socket.emit	newNote	to	server

So,	we	might	use	an	acknowledgement	for	the	 createNote 	event	from	the	server	back	to	the	client.	We	emit	an
acknowledgement	from	the	server,	and	listen	for	it	on	the	client.	The	acknowledgement	needs	to	be	handled	at	both
ends,	server	and	client.

e.g.	on	client,	we	add	a	callback	to	the	socket.emit	event

//	emit	event	for	create	note	from	client
socket.emit('createNote',	{
		author:	'spire',
		text:	'test	note	from	the	client...'
},	()	=>	{
		console.log('acknowledgement	received...');
});

and	then	on	the	server

socket.on('createNote',	(note,	clientCallback)	=>	{
		console.log('createNote	from	client',	note);

		//	app	wide	event	broadcast
		io.emit('newNote',	noteGenerator(note.author,	note.text));
		//	send	call	to	function	on	client	side	-	callback	setup	in	socket.emit	for	
createNote
		clientCallback();
});

The	acknowledgement	call	is	now	sent	from	the	server	to	the	client	to	confirm	that	the	original	emit	event	has	been
received	successfully	on	the	server	from	the	client.

v0.6	-	acknowledgements	-	return	data	in	acknowledgement

We	can	also	return	data	in	the	acknowledgement	call	from	the	server	to	the	client.

We	can	return	a	single	item,	or	multiple	in	an	object.	e.g.

//	send	call	to	function	on	client	side	-	callback	setup	in	socket.emit	for	
createNote
clientCallback({
		text:	'acknowledging	new	note...',
		createdAt:	currentDate
});

v0.7	-	client	forms

We	need	to	add	some	client-side	forms	to	allow	a	user	to	create	a	new	note	&c.

The	first	example	will	use	HTML5	with	jQuery.

jQuery	and	HTML5

We	can	download	and	add	jQuery	to	the	app's	 index.html 	page,	e.g.

<script	src="/utils/jquery-3.2.1.min.js"></script>

Our	HTML5	form	in	 index.html

<form	id="note-form">
		<input	name="note"	type="text"	placeholder="add	some	text..."	/>
		<button>create	note</button>
</form>

If	we	submit	this	form,	it	will	simply	cause	a	page	refresh	and	add	a	parameter	to	the	URL,	e.g.

localhost:3000/?note=a+new+note

and	so	on.	Therefore,	to	avoid	this	page	refresh,	we	need	to	add	a	listener	for	the	form's	click	event	on	submit	in
JavaScript.

We'll	add	client-side	UI	logic	to	a	file,	 ui.js ,	which	uses	jQuery,	e.g.

$('#note-form').on('submit',	(e)	=>	{
		//	stop	default	behaviour	for	event	-	i.e.	page	refresh	for	form	submit
		e.preventDefault();
		console.log('create	note	form	submitted...');
});

Initially,	we	can	use	the	 e 	argument	(for	event)	in	the	callback	to	prevent	the	form's	default	behaviour.	This	will	stop
the	default	page	refresh	for	each	form	submit.

Then,	we	can	call	 socket.emit() 	to	respond	to	the	form	submit	for	the	newly	created	note,	e.g.

socket.emit('createNote',	{
		author:	'amelie',
		text:	$('[name=note]').val()
},	()	=>	{

});

render	messages	to	UI	-	note	creation

Add	element	placeholder	in	 index.html 	DOM	to	store	return	messages	&c.	from	server.

<ol	id="messages">

In	 index.js ,	we	can	create	an	element	to	add	to	the	DOM	in	the	listener	for	a	new	note,	e.g.

//	listen	for	new	note	created	on	the	server
socket.on('newNote',	(note)	=>	{
		console.log(note);
		//	create	element	with	note	content
		var	li	=	$('');
		li.text(`${note.author}:	${note.text}`);
		//	append	new	element	to	DOM	placeholder
		$('#messages').append(li);
});

render	messages	to	UI	-	users

We	can	also	render	messages	for	user	events,	including	welcome	and	new	users.

//	listen	for	a	message	to	a	single	user	-	current	socket	connection
socket.on('userMessage',	(message)	=>	{
		console.log(message);
		//	create	element	with	message	content
		var	li	=	$('');
		li.text(`${message.from}:	${message.text}`);
		//	append	new	element	to	DOM	placeholder
		$('#messages').append(li);
});

So,	we've	updated	the	listener	for	a	 userMessage 	sent	from	the	server	and	received	by	the	client.	Likewise,	we	can
update	the	listener	for	a	 groupMessage ,	e.g.

//	listen	for	a	broadcast	group	message	-	all	connected	users	except	originating	user	
(i.e.	new	user	joined...)
socket.on('groupMessage',	(message)	=>	{
		console.log(message);
		//	create	element	with	message	content
		var	li	=	$('');
		li.text(`${message.from}:	${message.text}`);
		//	append	new	element	to	DOM	placeholder
		$('#messages').append(li);
});

v0.8	-	update	UX	for	client

We	can	now	modify	the	user	experience	(UX)	for	the	app.

For	example,	we	might	clear	the	entered	text	once	the	form	data	has	been	sent.

clear	input	field

So,	we	can	modify	the	listener	for	the	form's	input	text	field,	e.g.

//	create	note	form	submit	-	event	listener
$('#note-form').on('submit',	(e)	=>	{
		//	stop	default	behaviour	for	event	-	i.e.	page	refresh	for	form	submit
		e.preventDefault();
		console.log('create	note	form	submitted...');

		var	inputText	=	$('[name=note]');

		//	emit	data	for	new	note	to	server...
		socket.emit('createNote',	{
				author:	'amelie',
				text:	inputText.val()
		},	()	=>	{
				//	clear	value	for	message	input	field	in	form
				inputText.val('');
		});

});

We've	abstracted	the	selector	for	the	attribute	on	the	input	field,	and	then	clear	it	in	the	callback	for	the	 emit()
method.

add	focus	to	the	input	field

We	can	also	ensure	that	the	note	input	text	field	is	set	as	focus	as	the	app	loads.	In	 index.html ,	we	can	update	the
attributes	for	the	input	text	field,	e.g.

<input	name="note"	type="text"	placeholder="new	note	text..."	autofocus	/>

We	also	have	the	option	to	remove	the	autocomplete	feature	for	this	input	field,	e.g.

<input	name="note"	type="text"	placeholder="new	note	text..."	autofocus	
automcomplete="off"/>

v0.8.1	-	add	timestamps	for	notes	&c.

We	need	to	add	formatted	timestamps	for	the	creation	of	a	note,	updates,	users	&c.

We	can	use	the	Moment.js	library	to	help	format	these	timestamps,

Moment.js	-	https://momentjs.com/

We	can	install	it	using	various	tools,	including	NPM,	Yarn,	Bower	&c.

npm	i	moment	--save

or	we	can	simply	download	a	copy	of	the	JS	file	for	local	reference	in	the	app.

v0.8.1	-	Moment.js	usage	-	server-side

We	can	 require 	Moment	in	our	app,	for	Node	apps,	e.g.

var	moment	=	require('moment');

Also	use	Moment	to	get	current	timestamp,	instead	of	plain	JS

var	currentDate	=	new	Date().getTime();

we	can	now	use,

moment().valueOf();

For	the	generation	of	notes	and	messages	we	can	update	the	functions	in	 messaging.js 	and	 notes.js ,	e.g.

//	abstract	generation	of	message	-	use	Moment.js	for	timestamp
var	noteGenerator	=	(author,	text)	=>	{
		return	{
				author,
				text,
				createdAt:	moment().valueOf()
		}
};

The	call	to	create	the	timestamp	is	in	the	function	itself	to	ensure	it	is	called	each	time	a	new	note,	or	message	&c.,	is
created.

v0.8.1	-	Moment.js	usage	-	client-side	rendering

We	need	to	add	the	Moment.js	library	to	the	app	to	be	able	use	it	for	client-side	rendering,	e.g.	in	 index.html

We	can	add	a	copy	of	 moment.js 	to	the	 public/utils 	directory	for	the	project,

<script	src="/utils/moment.js"></script>

format	time	for	new	note

In	the	current	listener	for	a	new	note,

//	listen	for	new	note	created	on	the	server
socket.on('newNote',	(note)	=>	{
		console.log(note);
		//	create	element	with	note	content
		var	li	=	$('');
		li.text(`${note.author}:	${note.text}`);
		//	append	new	element	to	DOM	placeholder
		$('#messages').append(li);
});

we	can	now	add	a	call	to	Moment	to	format	the	timestamp	for	each	new	note,	e.g.

var	formatTime	=	moment(note.createdAt).format('h:mm	a');

We	can	then	output	this	formatted	time	for	rendering	to	the	user,	e.g.

li.text(`${note.author}	@	${formatTime}:	${note.text}`);

format	new	time	for	users	and	messages

We	can	also	update	messaging	in	the	app,	e.g.

//	listen	for	a	message	to	a	single	user	-	current	socket	connection
socket.on('userMessage',	(message)	=>	{

		console.log(message);
		//	use	Moment	to	format	createdAt	timestamp
		var	formatTime	=	moment(message.createdAt).format('h:mm:ss	a');
		//	create	element	with	message	content
		var	li	=	$('');
		li.text(`${message.from}	@	${formatTime}:	${message.text}`);
		//	append	new	element	to	DOM	placeholder
		$('#messages').append(li);
});

Extras	-	add	some	style

Create	a	new	folder	for	the	CSS	stylesheets,	 /public/css ,	and	then	add	a	stylesheet	file	for	the	app	styling,	
style.css .

Then,	we	can	reference	this	file	in	the	head	metadata	of	the	 index.html 	file,	e.g.

<link	rel="stylesheet"	href="/css/style.css">

