
Extra	notes	-	Heroku	&	Git
Dr	Nick	Hayward

Contents

basic	install	for	Heroku
basic	usage	with	Heroku
Node	and	Express	app	setup	for	Heroku
push	app	to	Heroku	for	hosting
rename	Heroku	app	from	cli

basic	install	for	Heroku

Heroku	is	a	hosted	cloud	service	for	publication	of	web	apps	&c.	in	a	variety	of	languages,	including	Node.js.

Further	details	available	at	Heroku	website,

https://www.heroku.com

Sign	up	for	a	free	account	at	the	above	site.

Then,	we	need	to	install	Heroku's	CLI	toolbelt	app,

https://toolbelt.heroku.com

For	OS	X,	the	simplest	option	is	to	use	Homebrew,

brew	install	heroku

and	then	check	install	version,

heroku	--version

CLI	help	documentation	can	then	be	found	using	the	following	command,

heroku	help

Reference	guide	for	the	toolbelt	CLI,

https://devcenter.heroku.com/articles/heroku-cli

basic	usage	with	Heroku

Then,	we	need	to	login	to	our	Heroku	account	on	the	local	machine,

heroku	login

This	command	will	then	request	the	email	address	registered	with	Heroku,	and	your	Heroku	account	password.

After	logging	in,	a	local	machine	can	now	communicate	with	the	Heroku	servers.

SSH	keys	can	also	be	added	to	Heroku	CLI	using	the	following	command,

heroku	keys:add

It	will	verify	the	key	to	upload,	and	then	set	this	against	the	current	logged	in	account.

n.b.	Heroku	will	usually	send	a	confirmation	email	as	well	-	just	to	check	you	actually	wanted	the	key	added	to	your
account...

We	can	now	check	the	keys	currently	connected	to	our	logged	in	Heroku	account,

heroku	keys

If	we	need	to	remove	a	key,	we	can	simply	use	the	following	command,

heroku	keys:remove

plus	the	required	email	address.

With	the	ssh	key	setup,	we	can	then	test	the	ssh	connection	to	Heroku

ssh	-v	git@heroku.com

For	the	first	run,	this	will	check	that	we	want	to	continue	this	remote	connection,	and	then	confirm	with	a	debug
message,	 Authentication	succeeded	(publickey) .

Node	and	Express	app	setup	for	Heroku

For	hosting	a	Node.js	and	Express	app	with	Heroku,	we	need	to	modify	a	couple	of	settings	in	our	main	app	file,	e.g.
server.js

We	start	by	setting	a	variable	for	the	server's	 port 	number,	which	is	usually	set	to	3000,	3030	&c.	for	local
development.

//	store	port	for	the	app	-	e.g.	port	set	by	heroku	for	hosting	OR	set	default	for	
local	dev...
//	process.env	object	stores	env	variables	as	key:value	pairs
const	port	=	process.env.PORT	||	3030;

We	can	then	use	this	dynamic	or	default	port	with	the	app	itself,	either	remotely	with	Heroku	or	for	local	dev	work,	e.g.

//	specify	port	number	for	server
app.listen(port,	()	=>	{
		//	output	server	and	port	-	heroku	will	modify	randomly...
		console.log(`server	now	listening	on	port	${port}`);
});

We	can	also	log	the	server	port	to	the	console	for	reference.

Then,	we	need	to	modify	the	package.json	file	for	the	app,	e.g.

...
"scripts":	{
		"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1",
		"start":	"node	server.js"
}
...

The	start	script	is	needed	by	Heroku	to	determine	how	to	start	our	app.	We	can	customise	this	as	needed	for	different
app.

We	can	then	use	this	script	to	also	start	the	app	locally,	e.g.

npm	start

which	will	then	start	the	app,	and	output	the	expected	log	data	to	the	console.

push	app	to	Heroku	for	hosting

After	committing	and	pushing	latest	version	to	GitHub	&c.,	we	are	then	ready	to	push	them	to	Heroku	for	the	app
associated	on	Heroku.

To	add	an	app	on	Heroku	for	the	current	local	app,	we	need	to	run	the	following	local	command,

heroku	create

This	command	needs	to	be	executed	at	the	root	of	the	current	app,	and	only	once	per	app.

The	Heroku	CLI	toolbelt	will	then	create	a	new	app,	assign	a	name,	and	return	the	url	for	this	app	on	Heroku,	and	its
associated	git	url	on	Heroku.

We	can	the	push	our	app	to	this	Heroku	url	for	hosting.

git	push	heroku

This	command	will	push	the	current	app	to	the	Heroku	Git	url	just	defined	as	part	of	the	Heroku	create	process.

n.b.	Heroku	expects	the	app	to	reside	at	the	root	of	the	git	repository,	i.e.	 heroku	create 	run	at	the	root	of	the
directory	structure	alongside	 .git .	However,	if	the	project	you	want	to	push	to	Heroku	is	in	a	sub-directory,	you	need
to	use	the	recent	git	command	for	 subtree ,	e.g.

git	subtree	push	--prefix	your_app_dir_path	heroku	master

The	path	may	be	nested	many	levels,	as	long	as	these	are	specified	correctly	in	the	above	command.

Also,

n.b.2	there	may	be	sync	issues	with	multiple	collaborators	to	Heroku	for	the	same	project	using	this	structure.	This
command	can	then	be	updated	to	the	following,

git	push	heroku	'git	subtree	split	--prefix	your_app_dir_path	branch':master	--
force

The	reason	this	may	become	an	issue	is	that	the	local	branch	may	fall	behind	the	Heroku	remote.

rename	Heroku	app	from	cli

We	can	rename	and	update	a	Heroku	app	using	the	CLI	toolbelt,	again	in	the	root	directory	of	the	enclosing	git
repository

heroku	apps:rename	new_name	--app	current_name

This	will	update	the	name	locally,	and	on	the	Heroku	servers.	It	will	also	update	the	git	repository	name	for	Heroku
push	commands.

