
JS	-	OAuth	2.0	with	Google	APIs	-	Overview
Dr	Nick	Hayward

A	brief	overview	of	using	OAuth	2.0	with	Google	APIs.

Contents

intro
basic	outline

Intro

This	outline	is	based	on	the	Google	Identity	Platform	documentation	for	OAuth	2.0	access	to	Google	APIs.

Basic	outline

There's	a	defined	pattern	to	OAuth	2.0	based	access	to	Google	APIs.	As	an	overview,	there	are	primarily	4	main	steps
we	may	consider.

1.	Credentials

Obtain	OAuth	2.0	credentials	from	the	Google	API	console.	This	provides	a

client	ID
client	secret

These	credentials	are	known	to	the	developer's	app	and	Google.	The	required	credentials	will	vary	from	app	to	app,
depending	upon	type.	A	JavaScript	application,	for	example,	will	not	require	a	client	secret.

2.	Obtain	an	access	token

An	app	needs	to	obtain	an	access	token	from	the	Google	Authorisation	server	before	it	can	access	private	account
data.

A	single	token	may	grant	access	to	various	APIs	and	different	options.	These	options	are	dependent	upon	the	granted
scope,	a	variable	parameter	used	to	control	the	set	of	resources	and	operations	that	a	token	may	access	upon
authorisation.

For	a	JS	app,	an	app	might	request	a	token	using	a	simple	browser	redirect	to	Google.	For	user	content,
authentication	will	be	required	using	such	a	browser	redirect.	If	the	user	authenticates	correctly,	Google	will	grant	the
app	an	access	token.	Otherwise,	an	error	will	be	returned	for	the	authentication	failure.

3.	Send	access	token	to	API

After	successful	receipt	of	an	access	token,	an	app	can	send	this	token	to	a	Google	API	using	a	HTTP	authorisation
header.

Such	access	tokens	are	only	useful	and	valid	for	the	operations	and	resources	specified	in	the	scope	of	the	token
request.	Access	will	often	restricted	to	the	specifed	API.

4.	Refresh	access	token

An	access	token	has	a	limited	lifetime.	Once	this	lifetime	has	expired,	it	is	possible	to	obtain	a	required	refresh	token.

This	refresh	token	allows	an	app	to	obtain	new	access	tokens.



JS	usage

JavaScript	apps	need	to	work	with	Google's	policies	to	enable	authentication	and	authorisation	for	required	APIs.	For
example,	Google	defines	two	levels	of	access	for	their	APIs,

simple
authorised


