
Extra	Notes	-	Web	Development	-	Time
Dr	Nick	Hayward

Basic	Timestamps

A	basic	example	of	using	timestamps	with	JavaScript,	and	rendering	to	HTML.

Contents

Intro
get	timestamp	with	JS
MDN	resources	-	Date	object

date	methods	and	output

Moment.js	library
Moment	usage	examples

intro

Time	and	timestamps	in	JS,	and	other	development	languages,	refer	to	a	specific	date,

1st	January	1970	00:00:00	(UTC)

This	is	commonly	referenced	as	the	Unix	Epic.

So,	a	timestamp	in	milliseconds	can	be	positive	or	negative	relative	to	the	starting	point	of	zero.	e.g.

0	=	1st	January	1970	00:00:00	(AM)
-1000	=	31st	December	1969	11:59:59	(PM)
10000	=	1st	January	1970	00:00:10	(AM)

and	so	on.

get	timestamp	with	JS

We	can	get	the	current	timestamp	in	milliseconds	using	JS's	built	in	constructor	and	method,	e.g.

var	currentTime	=	new	Date().getTime();

However,	this	return	value	will	need	to	be	formatted	in	various	ways	to	present	a	meaningful	time	and	data	to	a	user.

MDN	resources	-	Date	object

One	option	for	formatting	the	current	value	of	a	timestamp	is	to	use	available	methods	for	the	 Date ,	as	outlined	in	the
MDN	documentation,

MDN	Global	Objects	-	Date	-	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Date

There	are	many	available	GETTER	and	SETTER	methods	to	help	us	interpret,	modify,	and	render	a	Date	object.

date	methods	and	output

We	can	call	various	methods	on	the	 Date 	object,	e.g.



//	get	current	date
var	currentDate	=	new	Date();
//	get	current	time
var	currentTime	=	currentDate.getTime();
//	get	current	month
var	currentMonth	=	currentDate.getMonth();

However,	the	return	for	 currentMonth 	will	simply	be	a	number	for	the	calendar	month,	starting	at	 0 .

We	may	write	a	custom	function	to	convert	this	month	number,	e.g.

//	format	month	number	to	concatenated	month	string
function	monthFormatter(currentMonth)	{
		const	months	=	['Jan',	'Feb',	'Mar',	'Apr',	'May',	'June',	'July',	'Sep',	'Oct',	
'Nov',	'Dec'];
		var	month	=	months[currentMonth];
		return	month;
}

Moment.js	library

We	can	also	use	the	Moment	JS	library	to	help	format	times	for	use	in	an	app.	Moment	has	now	become	the	de-facto
JS	library	for	this	type	of	utility.	Further	details	are	available	at	the	following	URL,

Moment.js	-	https://momentjs.com/

We	can	install	it	using	various	tools,	including	NPM,	Yarn,	Bower	&c.

npm	i	moment	--save

or	we	can	simply	download	a	copy	of	the	JS	file	for	local	reference	in	the	app.

Moment	usage	examples

We	can	 require 	Moment	in	our	app,	for	Node	apps,	e.g.

var	moment	=	require('moment');

A	few	usage	examples	include,	e.g.

//	get	current	date
var	date	=	moment();

//	check	default	date	format
console.log(date.format());

//	format	date	-	month	shorthand	version	-	e.g.	Jan
console.log(date.format('MMM'));

//	format	date	-	month	&	year	shorthand	version	-	e.g.	Jan	2018
console.log(date.format('MMM	Y'));

//	format	date	-	month	&	year	shorthand	version	-	e.g.	Jan	18
console.log(date.format('MMM	YY'));

Further	details	are	available	on	the	Moment.js	website,

Moment.js	Docs	-	Display	-	https://momentjs.com/docs/#/displaying/

We	can	also	calculate	time	differences,	time	used	and	so	on	with	methods	such	as	 add() 	and	 subtract() .	e.g.



//	use	add()	method	-	add	10	years
date.add(10,	'year');
console.log(date.format('MMM	Do,	Y'));	//	e.g.	Jan	10th,	2028

//	use	subtract()	method	=	subtract	10	months
date.subtract(10,	'months');
console.log(date.format('MMM	Do	Y'));	//	e.g.	Mar	10th	2027

We	can	also	format	and	output	times,	both	12	and	24	hour	clocks	and	use	of	AM	and	PM	if	required.	e.g.

//	output	formatted	time	-	e.g,	9:40	pm
console.log(date.format('h:mm	a'));

//	output	formatted	time	-	e.g	21:40
console.log(date.format('H:mm'));


