
Extra	Notes	-	Web	Development	-	Patterns
Dr	Nick	Hayward

Publication	&	Subscription	pattern

A	brief	overview	of	implementing	the	PubSub	pattern	using	plain	JavaScript.

contents

intro
benefits	of	observer	&	PubSub	patterns
example

event	system
usage

intro

A	variation	of	the	standard	observer	pattern	is	the	publication	and	subscription,	or	PubSub,	pattern.

Commonly	used	in	JavaScript	development,	the	PubSub	pattern	publishes	a	topic	or	event	channel.	This	publication
acts	as	a	mediator	between	subscriber	objects	wishing	to	receive	notifications,	and	the	publisher	object	announcing	an
event.

This	mediator,	or	event	system,	allows	us	as	developers	to	easily	define	specific	events,	which	may	then	pass	custom
arguments	to	a	subscriber.

In	effect,	we're	trying	to	avoid	potential	dependencies	between	subscriber	objects	and	the	publisher	object.

Inherent	to	this	pattern	is	the	simple	abstraction	of	responsibility.	Publishers	are	unaware	of	the	nature	or	type	of
subscribers	for	their	messages.	Likewise,	subscribers	are	unaware	of	the	specifics	for	a	given	publisher.	Subscribers
simply	identify	their	interest	in	a	given	topic	or	event,	and	then	receive	notifications	of	updates	for	a	given	subscribed
channel.

A	primary	difference	with	the	observer	pattern	is	the	abstraction	of	the	subscriber.	As	long	as	a	subscriber	is	able	to
handle	and	receive	the	notifications,	they	can	use	the	broadcasts	by	the	publisher.

So,	we're	creating	an	event	system	that	sits	between	the	publisher	and	the	subscriber.

e.g.

																			|		publisher		|

																										|								publish	topic/event
																										v

																			|	topic/event	|
																			|			channel			|

																										^
																										|								subscribe

																			|	subscriber		|

In	effect,	the	subscriber	is	now	registered	to	listen	for	certain	topic	or	event	announcements.	The	handler	for	a	given
subscriber	may	then	decide	to	output	the	return	from	the	publisher,	or	perhaps	simply	log	the	update,	and	so	on.

benefits	of	observer	&	pub-sub	patterns

Observer	and	PubSub	patterns	help	us,	as	developers,	consider	more	carefully	the	inherent	relationships	that	exist
within	our	app's	logic	and	structure.

We	should	be	able	to	identify	certain	aspects	of	our	application,	which	contain	direct	relationships.	Many	of	these
dependencies	may	be	replaced	with	subjects	and	observers.

A	change	to	tightly	coupled	code	may	initially	seem	straightforward,	but	in	a	large	application	this	can	quickly	become
bad	practice.	A	seemingly	minor	change	to	a	tightly	coupled	application	will	often	create	a	cascade	or	waterfall	effect
for	subsequent	required	changes	and	updates.

A	known	side-effect	of	such	tightly-coupled	code	is	the	frequent	need	to	mock	usage	&c.	in	tests.	Again,	as	the	app
scales	this	will	be	increasingly	fraught	with	issues,	including	testing	complexity	and	time	requirements.

With	the	PubSub	pattern,	an	inherent	benefit	for	our	code	is	the	creation	of	smaller,	loosely	coupled	blocks,	which	may
then	help	improve	management	and	reuse.

example

event	system

//	constructor	for	pubsub	object
function	PubSub	()	{
this.pubsub	=	{};
}

//	publish	-	expects	topic/event	&	data	to	send
PubSub.prototype.publish	=	function	(topic,	data)	{
		//	check	topic	exists
		if	(!this.pubsub[topic]){
				console.log(`publish	-	no	topic...`);
				return	false;
		}
		//	loop	through	pubsub	for	specified	topic	-	call	subscriber	functions...
		this.pubsub[topic].forEach(function(subscriber)	{
						subscriber(data	||	{});
				});
};

//	subscribe	-	expects	topic/event	&	function	to	call	for	publish	notification
PubSub.prototype.subscribe	=	function	(topic,	fn)	{
		//	check	topic	exists
		if	(!this.pubsub[topic])	{
				//	create	topic
				this.pubsub[topic]	=	[];
				console.log(`pubsub	topic	initialised...`);
		}
		else	{
				//	log	output	for	existing	topic	match
				console.log(`topic	already	initialised...`);
		}
		//	push	subscriber	function	to	specified	topic
		this.pubsub[topic].push(fn);
};

usage

//	basic	log	output
var	logger	=	data	=>	{	console.log(`logged:	${data}`);	};

//	test	function	for	subscriber
var	domUpdater	=	function	(data)	{
		document.getElementById('output').innerHTML	=	data;
}

//	instantiate	object	for	PubSub
const	pubSub	=	new	PubSub();

//	subscriber	tests
pubSub.subscribe('test_topic',	logger);
pubSub.subscribe('test_topic2',	domUpdater);
pubSub.subscribe('test_topic',	logger);

//	publisher	tests
pubSub.publish('test_topic',	'hello	subscribers	of	test	topic...');
pubSub.publish('test_topic2',	'update	notification	for	test	topic2...');

Demo	-	Pub/Sub

http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/

